



UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ SPOŁECZNY



Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

# JĘZYK ANGIELSKI W CHEMII I W OCHRONIE ŚRODOWISKA



Wydawnictwo Uniwersytetu Gdańskiego

Marek Kwiatkowski Piotr Stepnowski

# JĘZYK ANGIELSKI W CHEMII I W OCHRONIE ŚRODOWISKA

Marek Kwiatkowski Piotr Stepnowski

Uniwersytet Gdański Gdańsk 2010 © Copyright by Marek Kwiatkowski and Piotr Stepnowski

Skład komputerowy: Marek Kwiatkowski

Redakcja naukowa: Marek Kwiatkowski

Korekta językowa: Peter Senn

Recenzent: prof. dr hab. inż. Waldemar Wardencki

**Okładkę i strony tytułowe zaprojektowali:** Anna Białk-Bielińska, Jolanta Kumirska, Marek Kwiatkowski

All rights reserved

ISBN 978-83-7326-714-5

Uniwersytet Gdański Wydział Chemii 80-952 Gdańsk, ul. Sobieskiego 18

# Spis treści

|    | Wstęp |                                                     |    |  |  |
|----|-------|-----------------------------------------------------|----|--|--|
| 1. | Mat   | hematics in Chemistry                               | 8  |  |  |
|    | 1.1.  | Mathematics in chemistry                            | 8  |  |  |
|    | 1.2.  | Other mathematical expressions useful for chemists  | 11 |  |  |
| 2. | The   | World of Atoms                                      | 17 |  |  |
|    | 2.1.  | The structure of the atom                           | 17 |  |  |
|    | 2.2.  | Atomic number, mass number and relative atomic mass | 20 |  |  |
|    | 2.3.  | Radioactivity                                       | 23 |  |  |
| 3. | Elec  | tron Configuration. Periodic Table                  | 28 |  |  |
|    | 3.1.  | The electron configuration of an atom               | 28 |  |  |
|    | 3.2.  | The periodic table of the elements                  | 30 |  |  |
|    | 3.3.  | The names and symbols of the elements               | 33 |  |  |
| 4. | Che   | mical Bonding                                       | 38 |  |  |
|    | 4.1.  | Covalent and coordinate bonds                       | 38 |  |  |
|    | 4.2.  | Ionic and metallic bonds                            | 42 |  |  |
| 5. | Nan   | ning Inorganic Compounds. Part I.                   | 47 |  |  |
|    | 5.1.  | Types of inorganic compounds                        | 47 |  |  |
|    | 5.2.  | Binary compounds with hydrogen                      | 52 |  |  |
|    | 5.3.  | Metal oxides and hydroxides                         | 54 |  |  |
| 6. | Nan   | ning Inorganic Compounds. Part II.                  | 58 |  |  |
|    | 6.1.  | The oxides of non-metals                            | 58 |  |  |
|    | 6.2.  | Acids and their anions                              | 60 |  |  |
|    | 6.3.  | Salts                                               | 64 |  |  |
| 7. | Org   | anic Molecules                                      | 68 |  |  |
|    | 7.1.  | Chemical formulae                                   | 68 |  |  |
|    | 7.2.  | Classification of organic molecules                 | 70 |  |  |

| 8   | Nam   | Naming Organic Compounds                                                      |     |  |  |  |
|-----|-------|-------------------------------------------------------------------------------|-----|--|--|--|
|     | 8.1.  | IUPAC rules for naming organic compounds                                      | 78  |  |  |  |
| 9   | In th | e Chemical Laboratory                                                         | 88  |  |  |  |
|     | 9.1.  | Cobalt(II) (cobaltous) nitrate hexahydrate $Co(NO_3)_2 \cdot 6H_2O$           | 88  |  |  |  |
|     | 9.2.  | Butyl benzoate C <sub>6</sub> H <sub>5</sub> COOC <sub>4</sub> H <sub>9</sub> | 92  |  |  |  |
| 10  | Che   | mical Analysis                                                                | 104 |  |  |  |
|     | 10.1. | Analytical tests (qualitative analysis)                                       | 104 |  |  |  |
|     | 10.2. | Titration (an example of quantitative analysis)                               | 108 |  |  |  |
| 11. | Chro  | omatography                                                                   | 113 |  |  |  |
|     | 11.1. | Principles of chromatography                                                  | 113 |  |  |  |
|     | 11.2. | Chromatography in the laboratory                                              | 115 |  |  |  |
|     | 11.3. | Instrumental laboratory techniques                                            | 118 |  |  |  |
| 12  | Spe   | ctroscopy. Part I.                                                            | 122 |  |  |  |
|     | 12.1. | Principles of spectroscopy                                                    | 122 |  |  |  |
|     | 12.2. | UV-VIS spectroscopy                                                           | 124 |  |  |  |
|     | 12.3. | Infrared (IR) spectrometry                                                    | 126 |  |  |  |
| 13  | Spe   | ctroscopy. Part II.                                                           | 129 |  |  |  |
|     | 13.1. | Nuclear magnetic resonance (NMR) spectroscopy                                 | 129 |  |  |  |
|     | 13.2. | Mass spectrometry (MS)                                                        | 132 |  |  |  |
|     | 13.3. | Determination of molecular structure: an example                              | 134 |  |  |  |
| 14  | Bas   | ic Concepts in Physical Chemistry. Part I.                                    | 139 |  |  |  |
|     | 14.1. | Enthalpy                                                                      | 139 |  |  |  |
|     | 14.2. | Entropy and free energy                                                       | 142 |  |  |  |
| 15  | Bas   | ic Concepts in Physical Chemistry. Part II.                                   | 145 |  |  |  |
|     | 15.1. | Chemical equilibrium                                                          | 145 |  |  |  |
|     | 15.2. | Reaction kinetics                                                             | 149 |  |  |  |

| 16. | Poll  | ution and Purification of Water                       | 154 |
|-----|-------|-------------------------------------------------------|-----|
|     | 16.1. | Water: circulation and resources                      | 154 |
|     | 16.2. | The pollution, purification and disinfection of water | 158 |
|     | 16.3. | Groundwater and its pollution                         | 163 |
|     | 16.4. | Wastewater treatment                                  | 167 |
| 17. | Тохі  | c Chemicals and their Effects                         | 171 |
|     | 17.1. | Pesticides                                            | 171 |
|     | 17.2. | Non-pesticide organic contaminants                    | 175 |
|     | 17.3. | Heavy metals                                          | 178 |
|     | 17.4. | Principles of toxicology                              | 184 |
| 18. | Was   | te Management                                         | 188 |
|     | 18.1. | Disposal of waste in landfills                        | 188 |
|     | 18.2. | Incineration of garbage                               | 191 |
|     | 18.3. | Reuse and recycling                                   | 194 |
|     | 18.4. | Hazardous waste                                       | 198 |
| 19. | Sust  | taining the Atmosphere for Life                       | 201 |
|     | 19.1  | Depletion of the ozone layer                          | 201 |
|     | 19.2. | Acid precipitation and photochemical smog             | 204 |
|     | 19.3. | The greenhouse effect and climate change              | 208 |
|     | 19.4. | Particulate matter in air                             | 211 |
| 20. | Bibli | ography                                               | 214 |

# WSTĘP

Kształcenie umiejętności posługiwania się specjalistycznym językiem angielskim, specyficznym dla nauk chemicznych oraz nauk związanych z szeroko pojętą ochroną środowiska, jest ważnym elementem studiów na Wydziale Chemii Uniwersytetu Gdańskiego. Skrypt *Język angielski w chemii i ochronie środowiska* powstał w celu wspierania realizowanego od kilku lat przedmiotu "Nomenklatura chemiczna w języku angielskim" dla studentów III roku studiów I stopnia na kierunku CHEMIA oraz planowanego przedmiotu fakultatywnego o podobnym charakterze dla studentów studiów I stopnia na kierunku OCHRONA ŚRODOWISKA.

Fragment podręcznika skierowany do studentów chemii składa się z 15 rozdziałów, przeznaczonych do realizacji w cyklu cotygodniowych dwugodzinnych spotkań w przeciągu semestru studiów. Część przeznaczona dla studentów ochrony środowiska zawiera 4 obszerniejsze rozdziały przeznaczone do realizacji w ciągu czterech trzygodzinnych spotkań.

Każdy z rozdziałów posiada jednolitą strukturę, na którą składają się: teksty wprowadzające nowe słownictwo, pytania sprawdzające zrozumienie tekstu, słowniczki nowych pojęć oraz ćwiczenia do wykonania przez studentów. Teksty mają charakter syntetycznej informacji na tematy znane już studentom z wcześniejszych lat studiów, podanej w języku angielskim. Ćwiczenia zostały zaprojektowane w taki sposób, aby można było je wykonywać przy pomocy tablicy interaktywnej, co w znaczący sposób zwiększa aktywność i zaangażowanie słuchaczy w proces dydaktyczny. W skrypcie zachowano pisownię typową dla klasycznej, brytyjskiej wersji języka angielskiego.

Autorzy mają nadzieję, że skrypt *Język angielski w chemii i ochronie środowiska* stanie się ważną pozycją wspomagającą kształcenie studentów na Wydziale Chemii Uniwersytetu Gdańskiego.

> Gdańsk, 30 września 2010 r. Marek Kwiatkowski Piotr Stepnowski

# **1. Mathematics in Chemistry**

#### **1.1. Mathematics in chemistry**

Chemistry is the study of matter and the changes it undergoes. Chemistry is governed by certain laws. A number of them take the form of mathematical expressions. Mathematics is important for the proper understanding of many chemical relationships. Therefore, we will first learn the mathematical terminology.

There are four basic operations on numbers: addition, subtraction, multiplication and division.

| Operation      | Action              | Result              | Numerical expression                 | Verbal expression                                                                                    |
|----------------|---------------------|---------------------|--------------------------------------|------------------------------------------------------------------------------------------------------|
| addition       | to add to           | sum                 | 2 + 2 = 4                            | two plus two equals (is, is equal to) four                                                           |
| subtraction    | to subtract<br>from | difference          | 5 – 3 = 2                            | five minus three equals () two                                                                       |
| multiplication | to multiply by      | product             | 6 × 7 = 42                           | six times seven equals () forty two                                                                  |
| division       | to divide by        | quotient<br>(ratio) | $4 \div 5 = 4/5 = \frac{4}{5} = 0.8$ | four divided by five (four<br>over five) equals () four<br>fifths, zero (oh, nought)<br>point eight. |

The division of two integers often produces a fraction. The upper figure in the fraction is called the numerator and the lower one is the denominator. The same applies to mathematical expressions. For example, in  $\frac{2a+b}{4c}$ , '2a + b' is the numerator and '4c' is the denominator.

In the expression 2<sup>3</sup>, the integer two is raised to the power of three. The superscript is called the exponent. Exponents are used in scientific notation; this is a common way of expressing very large and very small numbers in chemistry, for example:

| Flo                                                                                     | ating point notation                              | Scientific notation  |                                                                                 |
|-----------------------------------------------------------------------------------------|---------------------------------------------------|----------------------|---------------------------------------------------------------------------------|
| numerical                                                                               | verbal                                            | numerical            | verbal                                                                          |
| 6 870 000                                                                               | six million eight hundred<br>and seventy thousand | 6.87×10 <sup>6</sup> | six point eight seven times<br>ten to the power six / ten to<br>the sixth       |
| 0.000018 zero point zero zero zero<br>zero one eight (or oh,<br>nought instead of zero) |                                                   | 1.8×10⁻⁵             | one point eight times ten to<br>the power minus five / ten to<br>the minus five |

Exponents 2 and 3 have special names:  $4^2$  is spoken 'four squared' and  $5^3$  is 'five cubed'.

The other way of expressing very large or very small numbers is to use logarithms. Chemists often use common logarithms (or base 10 logarithms) to give the values of equilibrium constants, rate constants or pH. The expression log2 = 0.3 reads 'the logarithm of two equals zero (oh, nought) point three'.

Many chemical and physical values are expressed in specific units. Examples of such units are kg (kilogram), m<sup>2</sup> (square metre), g cm<sup>-3</sup> (gram per cubic centimetre).

#### 1.1.1. Reading comprehension:

- 1. What are the four basic mathematical operations?
- 2. Do we always obtain an integer when we divide two integers?
- 3. When do we use scientific notation?
- 4. How do chemists often express the values of chemical constants?
- 5. What units do we use to express the speed of a car?

| addition    | dodawanie |
|-------------|-----------|
| constant    | stała     |
| cube        | sześcian  |
| denominator | mianownik |

#### 1.1.2. New terms and expressions:

| difference     | różnica                       |
|----------------|-------------------------------|
| division       | dzielenie                     |
| equilibrium    | równowaga                     |
| exponent       | wykładnik                     |
| expression     | wyrażenie (wzór matematyczny) |
| fraction       | ułamek                        |
| integer        | liczba całkowita              |
| law            | prawo                         |
| logarithm      | logarytm                      |
| mathematics    | matematyka                    |
| matter         | materia                       |
| multiplication | mnożenie                      |
| numerator      | licznik                       |
| power          | potęga                        |
| product        | iloczyn                       |
| quotient       | iloraz                        |
| rate           | szybkość (reakcji)            |
| ratio          | stosunek (iloraz)             |
| relationship   | zależność                     |
| square         | kwadrat                       |
| subtraction    | odejmowanie                   |
| sum            | suma                          |
| unit           | jednostka                     |

# 1.1.3. Exercises

- 1. Read the following expressions aloud:
  - a. log1000 = 3
  - b. 0.03 + 0.07 = 0.1
  - c. 2000 1 = 1999
  - d.  $7^2 = 7 \times 7 = 49$
  - e.  $3 \div 500 = 0.006 = 6 \times 10^{-3}$

- f.  $\log(1.8 \times 10^{-5}) = \log(10^{-4.74}) = -4.74$
- g. 12.27 mg
- h. 0.05 mol dm<sup>-3</sup>
- i. 727 kJ mol<sup>-1</sup>

2. Match the mathematical expressions (printed in bold) with their descriptions:

| <b>3 + 3</b> = 6         | the cube of      |
|--------------------------|------------------|
| 3 + 3 = 6                | the logarithm of |
| 7 – 2 = <b>5</b>         | the square of    |
| 7 - 2 - 3                | addition         |
| <b>2 × 7</b> = 14        | a unit of        |
|                          | denominator      |
| 32 <b>+</b> 4 = <b>8</b> | difference       |
| 32 + + - 0               | division         |
| 5 <sup>4</sup>           | exponent         |
| 5                        | fraction         |
| 3 <sup>2</sup>           | integer          |
| 5                        | multiplication   |
| log(2.7)                 | numerator        |
|                          | power            |
| <u>4</u><br>5            | product          |
| 5                        | quotient         |
| <u>3</u><br>8            | subtraction      |
| 8                        | sum              |

# **1.2. Other mathematical expressions useful for chemists:**

#### <u>1.2.1. Roots</u>

| root              | pierwiastek                        |
|-------------------|------------------------------------|
| square root       | pierwiastek kwadratowy             |
| cube root         | pierwiastek sześcienny             |
| <i>n</i> -th root | pierwiastek <i>n</i> -tego stopnia |

Usage: The square root of four is two. Take the cube root of 27 and divide it by three.

#### 1.2.2. Equations

| equation           | równanie                    |
|--------------------|-----------------------------|
| linear equation    | równanie pierwszego stopnia |
| quadratic equation | równanie drugiego stopnia   |
| solution           | rozwiązanie                 |

#### 1.2.3. Exercise

1. Give the names of the following mathematical expressions:

| a. | 2x + 2 = 8; x = 3   | ;; |
|----|---------------------|----|
| b. | $3x^2 + 2x - 2 = 0$ |    |
| C. | $\sqrt{7}$          |    |
| d. | 2 <sup>16</sup>     |    |

# 1.2.4. Differential calculus

| differential calculus | rachunek różniczkowy |
|-----------------------|----------------------|
| differentiation       | różniczkowanie       |
| derivative            | pochodna             |
| integration           | całkowanie           |
| integral              | całka                |

# 1.2.5. Functions

| function          | funkcja             |
|-------------------|---------------------|
| graph             | wykres              |
| coordinates       | współrzędne         |
| coordinate system | układ współrzędnych |
| axis (axes)       | oś (osie)           |
| scale             | skala               |
| line              | prosta              |

| curve     | krzywa                          |
|-----------|---------------------------------|
| slope     | nachylenie (prostej, krzywej)   |
| intercept | punkt przecięcia (np. z osiami) |
| range     | zakres, przedział               |
| point     | punkt                           |

# 1.2.6. Exercise

1. Label the parts of the graphic representation of a function:



| A | curve                         |
|---|-------------------------------|
| В | graph                         |
| C | integral in the range (-6;-1) |
| D | intercept with the x-axis     |
| E | intercept with the y-axis     |
| F | range (-6;-1)                 |
| G | scale                         |
| Н | slope                         |
| J | <i>x</i> -axis                |
| К | <i>y</i> -axis                |
|   |                               |

| 1.2.7. Planar (flat) geometric figures |
|----------------------------------------|
|----------------------------------------|

| segment               | odcinek                |
|-----------------------|------------------------|
| angle                 | kąt                    |
| side                  | bok                    |
| acute angle           | kąt ostry              |
| obtuse angle          | kąt rozwarty           |
| right angle           | kąt prosty             |
| triangle              | trójkąt                |
| equilateral triangle  | trójkąt równoboczny    |
| isosceles triangle    | trójkąt równoramienny  |
| right-angled triangle | trójkąt prostokątny    |
| Pythagorean theorem   | twierdzenie Pitagorasa |
| quadrilateral         | czworokąt              |
| trapezoid; trapezium  | trapez                 |
| parallelogram         | równoległobok          |
| rhombus               | romb                   |
| rectangle             | prostokąt              |
| square                | kwadrat                |

| pentagon (regular) | pięciokąt (foremny)  |
|--------------------|----------------------|
| hexagon (regular)  | sześciokąt (foremny) |
| circle             | koło                 |
| ellipse            | elipsa               |

#### 1.2.8. Three-dimensional (3-D, spatial) figures

| face        | ściana        |
|-------------|---------------|
| tetrahedron | czworościan   |
| cube        | sześcian      |
| octahedron  | ośmiościan    |
| pyramid     | ostrosłup     |
| bipyramid   | bipiramida    |
| prism       | graniastosłup |
| cylinder    | walec         |
| sphere      | kula          |
| cone        | stożek        |

#### 1.2.9. Exercise

1. Choose the appropriate expressions.

All the angles in an equilateral / isosceles triangle are equal and obtuse / acute. A square may be viewed as a rectangle with all its angles / sides equal or as a rhombus with all its angles / sides equal. The Pythagorean statement / theorem applies only to right angles / right-angled triangles. The benzene ring is usually represented as a regular pentagon / hexagon.

The methane molecule has a **tetrahedral / octahedral** shape. Atoms may be imagined as very small **circles / spheres**. An octahedron has eight identical triangular **sides / faces**. A molecule of **phosphorus(III) chloride PCI<sub>3</sub> / phosphorus(V) chloride PCI<sub>5</sub>** may take the shape of either a square pyramid or a triangular bipyramid.

# 1.2.10. Rounding off

| accurate to <i>n</i> decimal places      | z dokładnością do <i>n</i> miejsc dziesiętnych<br>(po przecinku) |
|------------------------------------------|------------------------------------------------------------------|
| accurate to <i>n</i> significant figures | z dokładnością do <i>n</i> cyfr znaczących                       |

# 2. The World of Atoms

#### 2.1. The structure of the atom

For many centuries people believed that matter has a continuous form. The first person who suspected the discrete structure of matter was Democritus, a Greek philosopher living in 460 - 370 B.C. He defined an 'atom' as the smallest, indivisible portion of matter. He claimed that every substance is made up of a large number of specific atoms.

Today we know that Democritus was right about the atomic structure of matter, but that he was wrong about the indivisibility of an atom. All atoms consist of three kinds of elementary particles: protons, neutrons and electrons. The protons and neutrons form the nucleus of the atom, while the electrons move around the nucleus in a complex way. Let us now look at the properties of elementary particles.

| Particle | Mass (kg)               | Relative mass         | Relative charge | Symbol |
|----------|-------------------------|-----------------------|-----------------|--------|
| Electron | 9.109×10 <sup>-31</sup> | 5.45×10 <sup>-4</sup> | -1              | е      |
| Proton   | 1.673×10 <sup>-27</sup> | 1                     | +1              | p      |
| Neutron  | 1.675×10 <sup>-27</sup> | 1                     | 0               | n      |

An electron and a proton each carries an electric charge of equal magnitude but of opposite sign. By convention, an electron is assigned a -1 sign (negative), a proton a +1 sign (positive). As atoms are electrically neutral, the number of protons must equal the number of electrons in each atom.

A proton and a neutron have an almost identical mass. An electron, though, is about 1830 times lighter. Since the nucleus is made up exclusively of protons and neutrons, the mass of an atom is concentrated in its nucleus. The nucleus is very small, about 100 000 times smaller than the whole atom. Therefore, an atom is mostly empty space, with a massive but small nucleus in the centre and a diffuse, spherical cloud of electrons around it.

#### 2.1.1. Reading comprehension

- 1. What did Democritus think about the structure of matter?
- 2. Which of Democritus' predictions were entirely wrong?
- 3. What are the main components of an atom?
- 4. How are elementary particles distributed in the atom?
- 5. What are the relative charges and masses of the elementary particles of an atom?

| 2.1.2. New terms and expressions |                                    |
|----------------------------------|------------------------------------|
| atom                             | atom                               |
| atomic                           | atomowy                            |
| B.C. (before Christ)             | przed naszą erą (przed Chrystusem) |
| centre (US center)               | środek                             |
| century                          | wiek, stulecie                     |
| charge                           | ładunek                            |
| claim                            | utrzymywać, twierdzić, wyrażać sąd |
| complex                          | złożony, skomplikowany             |
| concentrate                      | koncentrować (się), skupiać (się)  |
| continuous                       | ciągły                             |
| convention                       | umowa, zwyczaj                     |
| diffuse                          | rozmyty, rozproszony               |
| discrete                         | nieciągły, dyskretny               |
| divisible                        | podzielny                          |
| electric                         | elektryczny                        |
| electron                         | elektron                           |
| elementary particle              | cząstka elementarna                |
| equal                            | jednakowy, równy                   |
| exclusively                      | wyłącznie                          |
| identical                        | identyczny                         |
| indivisible                      | niepodzielny                       |
| magnitude                        | wielkość                           |
| mass                             | masa                               |
| massive                          | masywny, ciężki                    |
|                                  |                                    |

#### 2.1.2. New terms and expressions

| matter           | materia                  |
|------------------|--------------------------|
| move             | poruszać się             |
| negative         | ujemny                   |
| neutral          | obojętny                 |
| neutron          | neutron                  |
| nucleus (nuclei) | jądro (jądra)            |
| number           | liczba                   |
| opposite         | przeciwny                |
| positive         | dodatni                  |
| property         | właściwość, cecha        |
| proton           | proton                   |
| relative         | względny                 |
| sign             | znak                     |
| space            | przestrzeń               |
| specific         | swoisty, swojego rodzaju |
| spherical        | kulisty                  |
| structure        | budowa, struktura        |

# 2.1.3. Exercises

1. Label the structural elements of an atom.



| Α. | electron |
|----|----------|
| В. | neutron  |
| C. | nucleus  |
| D. | proton   |

#### 2. Fill in the blanks.

#### 2.2. Atomic number, mass number and relative atomic mass

The atomic number of an atom is defined as the number of protons it contains. Substances made exclusively of atoms with the same atomic number are called elements. In other words, the atomic number identifies which element is which. The element with atomic number 1 is hydrogen, while the one with atomic number 79 is gold. Since individual atoms are electrically neutral, they contain exactly as many electrons as protons: the hydrogen atom has one electron, the gold atom 79 electrons.

The mass number is the total number of protons and neutrons in an atomic nucleus. The nucleus of hydrogen consists of only one proton. Since there are no neutrons, the mass number of hydrogen is 1. The mass number of gold is 197. This means that apart from 79 protons, the nucleus of the gold atom contains exactly 118 neutrons.

Two atoms may have the same number of protons but a different number of neutrons. Since they have the same atomic numbers, they are atoms of the same element. Atoms of an element differing in the number of neutrons in its nuclei are called isotopes. Some elements, such as fluorine, aluminium, cobalt or gold, exist in nature as single isotopes. But the majority of them occur as a mixture of several isotopes. For example, natural carbon consists of 99% of the  ${}^{12}_{6}$ C isotope, 1% of the  ${}^{13}_{6}$ C isotope and traces of the radioactive  ${}^{14}_{6}$ C isotope.

The  ${}^{12}_{6}$ C isotope has been chosen as the standard for relative atomic mass. The relative atomic mass tells us how many times the average mass of the atom of a given element is larger than 1/12 of the mass of the  ${}^{12}_{6}$ C atom. In contrast to the mass number, which is always an integer, the relative atomic mass is usually a decimal, as it expresses the weighted average mass of all the natural isotopes constituting the element. One can calculate the relative atomic mass of the element knowing the relative abundance of its isotopes.

#### 2.2.1. Reading comprehension

- 1. What is the atomic number of an element?
- 2. What is the mass number of an element?
- 3. How many neutrons are there in the nucleus of a gold atom?
- 4. What is the difference between two isotopes of the same element?
- 5. Is the mass number always the same as the relative atomic mass?
- 6. Why is the relative atomic mass usually a decimal?

| abundance (relative)    | rozpowszechnienie (względne) |
|-------------------------|------------------------------|
| aluminium (US aluminum) | glin                         |
| atomic number           | liczba atomowa               |
| average                 | średni, uśredniony           |
| calculate               | obliczać                     |
| cobalt                  | kobalt                       |
| consist (of)            | składać się (z)              |

2.2.2. New terms and expressions

| constitute             | składać się na                 |
|------------------------|--------------------------------|
| decimal                | liczba "niecałkowita"          |
| define                 | definiować, określać           |
| element                | pierwiastek                    |
| exactly                | dokładnie                      |
| express                | wyrażać                        |
| fluorine               | fluor                          |
| gold                   | złoto                          |
| hydrogen               | wodór                          |
| identify               | określać, rozpoznawać          |
| indicate               | wskazywać                      |
| individual             | poszczególny, pojedynczy       |
| isotope                | izotop                         |
| majority               | większość                      |
| mass number            | liczba masowa                  |
| mixture                | mieszanina                     |
| nucleus (nuclei)       | jądro (jądra)                  |
| radioactive            | promieniotwórczy, radioaktywny |
| (relative) atomic mass | (względna) masa atomowa        |
| single                 | pojedynczy                     |
| standard               | standard, wzorzec              |
| substance              | substancja                     |
| total                  | całkowity                      |
| weighted (average)     | ważona (średnia)               |

#### 2.2.3. Exercises

1. For the <sup>55</sup><sub>25</sub>Mn isotope, match the numbers with appropriate descriptions (one number may refer to two or more descriptions).

|       | atomic number        |
|-------|----------------------|
| 25    | mass number          |
| 30    | number of electrons  |
| 55    | number of neutrons   |
| 54.94 | number of protons    |
|       | relative atomic mass |

2. Fill in the blanks.

| Natural magnesium of three                                                         | e sta  | able    |              | :      |
|------------------------------------------------------------------------------------|--------|---------|--------------|--------|
| $^{24}_{12}\text{Mg},~^{25}_{12}\text{Mg}$ and $^{26}_{12}\text{Mg}.$ The relative | . of e | each is | s 79, 10 and | 11%    |
| respectively. The atomic mass of magr                                              | nesiu  | m can   | be calculate | d as a |
|                                                                                    | in     | the     | following    | way:   |
| $\frac{24 \cdot 79\% + 25 \cdot 10\% + 26 \cdot 11\%}{1000\%} = 24.32.$            |        |         |              |        |

100%

#### 2.3. Radioactivity

The nuclei of some, usually heavy, isotopes are unstable. They possess an excess of energy that is released in the form of radiation. Such isotopes are referred to as radioactive isotopes or radioisotopes. While emitting radiation, radioisotopes are gradually converted into other isotopes. This process is termed radioactive decay. There are three general types of radioactive decay: alpha, beta and gamma.

In alpha decay, the nuclei of the parent isotope emit alpha particles, each of which consists of two protons and two neutrons. The daughter isotope is a different element, since the nucleus contains two protons fewer.

In beta decay, a nucleus loses an electron, which is produced by transformation of one neutron to a proton. Again, the daughter isotope is a new element with one proton more in the nucleus.

Gamma decay involves the emission of high-energy, short-wave electromagnetic radiation. The nuclei of the daughter isotope have the same composition as those of the parent isotope.

Alpha radiation consists of large, heavy alpha particles (helium-4 nuclei, in fact). Since such particles interact strongly with other atoms, alpha radiation can be stopped even by a piece of thin metal or plastic foil. Beta radiation is a stream of electrons, which are small and can penetrate much further than alpha particles. Gamma radiation is even more penetrative: it can only be stopped by thick lead or concrete blocks.

The rate of radioactive decay is a first-order reaction. This means that the same fraction of the radioactive isotope decays in unit time. The time required for the isotope to decay to exactly half its original amount is known as its half-life. The half-lives of isotopes may vary over a very wide range, from fractions of a second to billions of years.

It is important not to confuse radioactive decay with nuclear fission. Nuclear fission involves the decomposition of a nucleus to smaller fragments, induced by the absorption of a neutron. A large amount of energy is evolved in this process. It can be utilized when nuclear fission is under full control, as in nuclear power plants.

#### 2.3.1. Reading comprehension

- 1. Why do some nuclei emit radiation?
- 2. What is radioactive decay?
- 3. What is the nature of alpha, beta and gamma decay?
- 4. Why do alpha, beta and gamma rays penetrate different distances?
- 5. What is the kinetics of radioactive decay?
- 6. What does the term 'half-life' mean?
- 7. What is the difference between radioactive decay and nuclear fission?

# 2.3.2. New terms and expressions

| absorption            | absorpcja, pochłanianie             |
|-----------------------|-------------------------------------|
| amount                | ilość                               |
| billion               | miliard                             |
| concrete              | beton                               |
| confuse               | pomylić, pomieszać                  |
| daughter isotope      | izotop potomny                      |
| decay (radioactive)   | rozpad (promieniotwórczy)           |
| decomposition         | rozkład, rozpad                     |
| electromagnetic       | elektromagnetyczny                  |
| emission              | emisja                              |
| evolve                | wydzielać (się)                     |
| excess                | nadmiar                             |
| first-order           | pierwszego rzędu                    |
| fission (nuclear)     | rozszczepienie (jądrowe)            |
| foil                  | folia                               |
| fragment              | fragment                            |
| gradually             | stopniowo                           |
| half-life             | okres połowicznego zaniku           |
| handle                | obchodzić się (z)                   |
| induce                | wywołać, spowodować                 |
| interfere             | oddziaływać                         |
| involve               | polegać (na), angażować             |
| lead                  | ołów                                |
| metal                 | metal                               |
| parent isotope        | izotop macierzysty                  |
| penetrate             | przenikać                           |
| penetrative           | przenikliwy                         |
| plastic               | tworzywo sztuczne, polimer, plastik |
| power plant (nuclear) | elektrownia (jądrowa)               |
| process               | proces                              |
| production            | wytwarzanie                         |
| radiation             | promieniowanie                      |
| radioisotope          | izotop promieniotwórczy             |

| rate (of a reaction)        | szybkość (reakcji)                 |
|-----------------------------|------------------------------------|
| reaction                    | reakcja                            |
| release                     | uwolnić, wydzielić                 |
| require                     | wymagać                            |
| rubber                      | guma                               |
| short-wave                  | krótkofalowy                       |
| stream                      | strumień                           |
| transform                   | przekształcić (się), zmienić (się) |
| transformation (conversion) | przemiana                          |
| unstable                    | niestabilny, nietrwały             |

#### 2.3.3. Exercises

1. Match the passages to form complete, correct statements.

| The nuclei of radioisotopes | are the same as helium nuclei.                                      |
|-----------------------------|---------------------------------------------------------------------|
| Alpha particles             | are unstable.                                                       |
| Beta particles              | bear a negative electric charge.                                    |
| Gamma rays                  | is a first-order reaction.                                          |
| Radioactive decay           | produces a lot of energy.                                           |
| Nuclear fission             | propagate through space in the same way as an electromagnetic wave. |

2. Indicate which statements are true (T) or false (F).

| a. Alpha radiation is a stream of negatively charged particles.                | T / F |
|--------------------------------------------------------------------------------|-------|
| b. Lead blocks effectively stop gamma radiation.                               | T/F   |
| c. Uranium is an alpha-emitter, so it is safe to handle it with rubber gloves. | T / F |
| d. The parent isotope and the daughter isotope are always different elements.  | T / F |
| e. The half-life of radioisotopes may be as long as several hundred years.     | T/F   |
| f. Nuclear fission is just another name for radioactive decay.                 | T/F   |

#### 3. Choose appropriate phrases.

Radioisotopes **reduce / release** excess energy in the form of **radiation / decay**. During the process of radioactive **decay / decomposition**, the **mother / parent** isotope transforms into a **daughter / child** isotope. Alpha particles penetrate a **longer / shorter** distance than beta particles do. After two half-lives, the original amount of radioisotope is reduced to one **third / fourth**. In the process of nuclear fission, a **nucleus / testicle** breaks up into several smaller fragments.

# 3. Electron Configuration. Periodic Table

#### **3.1.** The electron configuration of an atom.

The electrons circling around an atomic nucleus do not move in entirely random fashion. Their energy is quantized: this means that they can take only specific energy values. This also limits the space within which a given electron can be found.

| Name                            | Symbol | Values                                             | Structural element         | Symbols for<br>the structural<br>elements |
|---------------------------------|--------|----------------------------------------------------|----------------------------|-------------------------------------------|
| principal quantum<br>number     | n      | <i>n</i> = 1, 2, 3,                                | shell                      | K, L, M,                                  |
| azimuthal quantum<br>number     | Ι      | <i>l</i> = 0, 1, , <i>n</i> -1                     | subshell                   | s, p, d,                                  |
| magnetic quantum<br>number      | m      | $m_l = -l, -(l-1), \dots, -1, 0, 1, \dots, l-1, l$ | orbital                    | $s, p_x, p_y, p_z,$                       |
| electron spin<br>quantum number | ms     | $m_{\rm s} = -\frac{1}{2}, +\frac{1}{2}$           | direction of electron spin | $\downarrow \uparrow$                     |

The position of any electron is determined by four quantum numbers:

The principal quantum number n defines the electron shell of an atom. Electron shells are split into subshells, defined by the azimuthal quantum number l. Subshells in turn split into a set of degenerate orbitals. Each orbital holds two electrons of opposite spins. Pauli's exclusion principle states that no two electrons in an atom may have the same set of four quantum numbers.

Every element has its own, unique distribution of electrons throughout the atomic orbitals – this is referred to as the electron configuration of an atom. The number of electrons in the outermost, valence shell (subshell) defines the chemical properties of an element. Two different elements with the same number of valence electrons have similar chemical properties.

#### 3.1.1. Reading comprehension

- 1. What do we mean when we say that the energy of an electron is quantized?
- 2. What are the four quantum numbers?
- 3. How are quantum numbers related to the structural elements of an atom?
- 4. Which electrons define the chemical properties of an element?

#### 3.1.2. New terms and expressions

| azimuthal quantum number     | poboczna liczba kwantowa            |
|------------------------------|-------------------------------------|
| degenerate                   | zdegenerowany (o tej samej energii) |
| distribution                 | dystrybucja, rozmieszczenie         |
| electron configuration       | konfiguracja elektronowa            |
| electron spin quantum number | spinowa liczba kwantowa             |
| indicate                     | wskazywać                           |
| limit                        | ograniczać                          |
| magnetic quantum number      | magnetyczna liczba kwantowa         |
| maximum                      | maksimum, maksymalny                |
| orbital                      | orbital                             |
| Pauli's exclusion principle  | zakaz Pauliego                      |
| principal quantum number     | główna liczba kwantowa              |
| quantize                     | kwantować                           |
| quantum number               | liczba kwantowa                     |
| random                       | przypadkowy, losowy                 |
| set                          | układ, zestaw                       |
| shape                        | kształt                             |
| shell                        | powłoka                             |
| spin                         | spin                                |
| split                        | rozszczepiać (się)                  |
| subshell                     | podpowłoka                          |
| take (assume)                | przyjmować                          |
| valence                      | walencyjny                          |

#### 3.1.3. Exercise

| 1. Match the following phrases:                |                                                     |
|------------------------------------------------|-----------------------------------------------------|
| aziumthal quantum number                       | the number of <i>d</i> orbitals                     |
| degenerate                                     | assuming only specific values                       |
| electron configuration                         | defines the type of subshell                        |
| electron spin quantum number                   | defines the electron shell                          |
| electrons in the outermost shell<br>(subshell) | determines the shape of the orbital                 |
| five                                           | distribution of electrons throughout the atom       |
| magnetic quantum number                        | indicates the direction of the electron spin        |
| prinicpal quantum number                       | the maximum number of electrons in a single orbital |
| quantized                                      | of the same energy                                  |
| two                                            | valence electrons                                   |

#### **3.2.** The periodic table of the elements

The periodic table lists all the elements known (and in fact, those that are not yet known). They are organized in horizontal rows, called periods, and vertical columns, called groups. Within a period, the element placed to the right of another element has one proton (and electron) more than its neighbour, so the atomic numbers of the elements increase regularly across the period. Within a group, all the elements have a similar configuration of valence electrons, so their properties are similar.

When we examine how the properties of elements change with their position in the periodic table, we can observe many regularities. For example, atomic radii decrease from left to right across the period, but they increase from top to bottom down the group. On the other hand, electronegativity and the first ionization energy exhibit the opposite trend.

The periodic table is usually divided into three distinct sections: the *s*-, *p*- and *d*-blocks. Sometimes the *s*- and *p*-blocks together are called the main groups. The elements of some groups have been given specific names. The group 1 elements are called the alkali metals, while those in group 2 are known as the alkaline earth metals. Similarly, the elements of group 7 are often referred to as the halogens, and those of group 8 are the noble gases. The elements in the *d*-block are collectively referred to as the transition elements or transition metals; they include two separate rows of lanthanides and actinides. The non-metals are grouped in the upper right-hand corner of the periodic table, while the rest of the table is occupied by metals, except for the few metalloids, which lie on the borderline between the two.

#### 3.2.1. Reading comprehension

- 1. How is the periodic table organized?
- 2. Why do elements in the same group have similar chemical properties?
- 3. What trends can be observed in the periodic table?
- 4. What are the names of the groups in the s-block?
- 5. Where should you look for non-metals in the periodic table?

#### 3.2.2. New terms and expressions

| actinides             | aktynowce                           |
|-----------------------|-------------------------------------|
| alkali metals         | metale alkaliczne, litowce          |
| alkaline earth metals | metale ziem alkalicznych, berylowce |
| block                 | blok                                |
| borderline            | granica, linia graniczna            |
| collectively          | łącznie, razem                      |
| column                | kolumna                             |
| class                 | kategoria, typ                      |
| decrease              | maleć, zmniejszać się               |
| distinct              | wyraźny, odrębny                    |
| divide                | dzielić                             |
| electronegativity     | elektroujemność                     |

| exhibit                 | wykazywać, pokazywać, przedstawiać |
|-------------------------|------------------------------------|
| group                   | grupa                              |
| halogens                | halogeny, fluorowce                |
| horizontal              | poziomy                            |
| include                 | zawierać, włączać                  |
| increase                | wzrastać, zwiększać się            |
| ionization energy       | energia jonizacji                  |
| lanthanides             | lantanowce                         |
| list                    | wymieniać, wyszczególniać          |
| main                    | główny                             |
| metal                   | metal                              |
| metalloid (semi-metal)  | metaloid, półmetal                 |
| neighbour (US neighbor) | sąsiad                             |
| noble gases             | gazy szlachetne, helowce           |
| non-metal (nonmetal)    | niemetal                           |
| organize                | układać, porządkować, organizować  |
| period                  | okres                              |
| periodic table          | układ okresowy                     |
| position                | położenie                          |
| radius (radii)          | promień (promienie)                |
| reverse                 | odwrotny                           |
| row                     | rząd                               |
| section                 | część, fragment                    |
| transition elements     | pierwiastki przejściowe            |
| transition metals       | metale przejściowe                 |
| trend                   | tendencja, trend                   |
| vertical                | pionowy                            |

#### 3.2.3. Exercises

1. Fill in the blanks

2. Indicate which of the following statements are true (T) or false (F).

| a. The metallic character of elements increases across the period (from left to              |       |  |
|----------------------------------------------------------------------------------------------|-------|--|
| right).                                                                                      | T / F |  |
| b. Electronegativity increases across the period and decreases down the group. T / ${\sf F}$ |       |  |
| c. Magnesium is a main group element.                                                        | T / F |  |
| d. Iron is a typical <i>p</i> -block element.                                                | T / F |  |
| e. The lanthanides include ten elements.                                                     | T / F |  |
| f. All elements with an atomic number greater than 88 are actinides.                         | T / F |  |
| g. All <i>d</i> -block elements are transition metals.                                       | T/F   |  |

#### 3.3. The names and symbols of the elements

Some elements, such as gold, silver, copper, lead, iron, tin or sulphur have been known to man for millennia. Their names are traditional and specific for a particular language: compare English 'iron' with Italian 'ferro', German 'Eisen' or Polish 'żelazo', and English 'lead' with Italian 'piombo', German 'Blei', Polish 'ołów' and Russian 'svinec'.

The names of the other elements are spelt and sound similar in different languages because they usually have a common origin. For example, some elements were named after their distinctive properties: chlorine was named after its colour (Greek *chloros* means yellow-green), so it is 'cloro' in Italian, 'Chlor' in German and 'chlor' in Polish. The name 'phosphorus' (Greek *phos* 'light' and *phoros* 'bearer') was derived in a similar way.

Many elements were named after mythical characters, geographical areas, astronomical objects or famous scientists, for example:

| mercury Hg     | Mercury, agile messenger of Jupiter, Roman god of trade, profit and commerce. |  |
|----------------|-------------------------------------------------------------------------------|--|
| vanadium V     | Vanadis, Scandinavian goddess of beauty                                       |  |
| helium He      | Helios, Greek god of the Sun, impersonation of the Sun                        |  |
| selenium Se    | Selene, Greek goddess of the Moon                                             |  |
| uranium U      | Uranus, the seventh planet from the Sun                                       |  |
| europium Eu    | Europe (continent)                                                            |  |
| americium Am   | America (continent)                                                           |  |
| scandium Sc    | Scandinavia (region)                                                          |  |
| rhenium Re     | Rhine (river in Germany)                                                      |  |
| polonium Po    | Poland (country)                                                              |  |
| californium Cf | California (state in the USA)                                                 |  |
| mendelevium Md | Mendeleev (Russian chemist)                                                   |  |
| einsteinium Es | Einstein (physicist)                                                          |  |

Chemists use symbols to identify elements. Each element has its own, unique symbol consisting of one or two letters and is usually derived from its Latin name.

#### 3.3.1. Reading comprehension

- 1. Which elements have been known to man since ancient times?
- 2. What is the colour of chlorine?
- 3. What could be the origin of the name 'mercury'?
- 4. Which elements have 'geographical' names?

# 3.3.2. New terms and expressions

| lifornium ka<br>aracter p<br>emist cl | astronomia<br>kaliforn<br>bostać<br>chemik<br>chlor<br>kolor, barwa |
|---------------------------------------|---------------------------------------------------------------------|
| aracter p<br>emist c                  | postać<br>chemik<br>chlor                                           |
| emist cl                              | chemik<br>chlor                                                     |
|                                       | chlor                                                               |
| lorine                                |                                                                     |
|                                       | kolor, barwa                                                        |
| lour (US color) k                     |                                                                     |
| mmerce s                              | sprzedaż                                                            |
| mpare p                               | porównywać                                                          |
| ntinent k                             | kontynent                                                           |
| pper m                                | miedź                                                               |
| untry k                               | kraj, państwo                                                       |
| vrive w                               | wyprowadzić (w sensie wywieść)                                      |
| stinctive w                           | wyróżniający się, charakterystyczny                                 |
| nsteinium e                           | einstein                                                            |
| iropium e                             | europ                                                               |
| mous sł                               | sławny, słynny                                                      |
| eography g                            | geografia                                                           |
| b d                                   | póg                                                                 |
| bddess b                              | pogini                                                              |
| lium h                                | nel                                                                 |
| n ż                                   | żelazo                                                              |
| nguage ję                             | ęzyk                                                                |
| itin ła                               | aciński, łacina                                                     |
| endelevium m                          | mendelew                                                            |
| ercury rt                             | rtęć                                                                |
| essenger p                            | posłaniec                                                           |
| illennium (millennia) ty              | ysiąclecie (tysiąclecia)                                            |
| ythical m                             | mityczny                                                            |
| nject p                               | orzedmiot, obiekt                                                   |
| igin p                                | oochodzenie, źródło                                                 |
| orticular o                           | określony, szczególny                                               |
| losphorus fc                          | osfor                                                               |

| physicist           | fizyk                     |
|---------------------|---------------------------|
| planet              | planeta                   |
|                     |                           |
| polonium            | polon                     |
| profit              | zysk                      |
| region              | kraina, region            |
| rhenium             | ren                       |
| river               | rzeka                     |
| scandium            | skand                     |
| scientist           | naukowiec, badacz         |
| selenium            | selen                     |
| silver              | srebro                    |
| sound               | brzmieć                   |
| spell               | pisać (w sensie pisowni)  |
| state               | stan                      |
| sulphur (US sulfur) | siarka                    |
| symbol              | symbol                    |
| tin                 | cyna                      |
| trade               | handel                    |
| traditional         | tradycyjny                |
| unique              | unikalny, jedyny, swoisty |
| uranium             | uran                      |
| vanadium            | wanad                     |
|                     |                           |
### 3.3.3. Exercises

### 1. Give the names of the following elements:

| has an atomic number of 47                           |  |
|------------------------------------------------------|--|
| has a relative atomic mass of about 238              |  |
| lies between cobalt and copper in the periodic table |  |
| lies below cadmium in the periodic table             |  |
| lies in the 5 <sup>th</sup> period and in group 15   |  |
| the lightest element of group 17                     |  |
| the heaviest element of group 18                     |  |
| ends the lanthanide series                           |  |
| starts the second row of transition metals           |  |
| takes part in all combustion reactions               |  |

2. Group the names of the following elements according to their possible origin: barium, bohrium, bromine, chromium, darmstadtium, dubnium, fermium, gallium, germanium, indium, iodine, neptunium, nobelium, phosphorus, plutonium, radium, silver, sulphur, tantalum, technetium, thorium, tin, titanium.

| Traditional name            |  |
|-----------------------------|--|
| Mythical character          |  |
| Astronomical object         |  |
| Geographical name           |  |
| Named after a famous person |  |
| Distinctive property        |  |

# 4. Chemical Bonding

Atoms are linked by chemical bonds. There are four general types of bond: ionic, covalent, coordinate and metallic.

### 4.1. Covalent and coordinate bonds

A covalent bond is formed when two atoms share their unpaired valence electrons. Each shared pair of electrons gives rise to a single bond. Atoms linked by covalent bonds usually form molecules or polyatomic ions, for example, the hydrogen molecule H<sub>2</sub>, the hydrogen chloride molecule HCl or the hexafluorophosphate anion  $PF_6^-$ . Some atoms show a tendency to form multiple bonds. For example, two carbon atoms can be linked by a single bond (as in ethane CH<sub>3</sub>–CH<sub>3</sub>), a double bond (as in ethene CH<sub>2</sub>=CH<sub>2</sub>) or a triple bond (as in ethyne HC=CH).

When two bonded atoms differ in their electronegativity, the bonding electron pair is shifted towards the more electronegative atom. In this case, a partial negative charge appears on the more electronegative atom, and a partial positive charge on the less electronegative one. Such a bond resembles an electrical dipole and is referred to as a polar or polarized covalent bond. Molecules containing polarized bonds are usually polar, although this is not always the case. For example, both C=O bonds in the carbon dioxide molecule are polar, but the molecule as a whole is not polar, since the individual dipole moments of both bonds cancel each other out. In general, every covalent bond is polar to some extent, unless the bond occurs between two atoms of the same kind, as in the case of  $H_2$ ,  $Cl_2$ ,  $P_4$  or  $S_8$  molecules.

Sometimes, atoms linked by covalent bonds do not form separate molecules but produce a giant, three-dimensional structure. Examples of giant covalent structures include diamond and graphite (allotropic forms of carbon), silicon dioxide  $SiO_2$  or aluminosilicate anions.

A coordinate bond (dative bond) is a kind of covalent bond in which the whole bonding electron pair is provided by one of the linked atoms. Coordinate bonds are typical of transition metal ions, whose empty *d*-orbitals act as acceptors of electron pairs from donor atoms incorporated in ligands.

## 4.1.1. Reading comprehension

- 1. How is a covalent bond formed?
- 2. Do covalent bonds occur only in molecules?
- 3. What types of bonds occur in nitrogen and oxygen molecules?
- 4. Can a covalent bond link two atoms of the same kind?
- 5. Which type of covalent bond do we call a polar bond?
- 6. What is the difference between a covalent bond and a coordinate bond?
- 7. Which is the acceptor and which is the donor in the  $[Cu(H_2O)_6]^{2+}$  ion?

| acceptor                   | akceptor                    |
|----------------------------|-----------------------------|
| allotrope, allotropic form | odmiana alotropowa          |
| aluminosilicate            | glinokrzemian               |
| anion                      | anion                       |
| appear                     | pojawiać się                |
| bond                       | wiązanie                    |
| bonding electron pair      | wiążąca para elektronowa    |
| by means of                | za pomocą                   |
| cancel (each other) out    | kasować się (wzajemnie)     |
| carbon                     | węgiel (pierwiastek)        |
| carbon dioxide             | dwutlenek węgla             |
| cation                     | kation                      |
| coordinate or dative bond  | wiązanie koordynacyjne      |
| covalent bond              | wiązanie kowalencyjne       |
| crosslink                  | sieciować, łączyć wzajemnie |
| dipole                     | dipol                       |
| dipole moment              | moment dipolowy             |
| distance                   | odległość                   |
| donor                      | donor                       |
| double bond                | wiązanie podwójne           |
| ethane                     | etan                        |
| ethene                     | eten                        |
| ethyne                     | etin                        |

### 4.1.2. New terms and expressions

| jean originalinterformationhexafluorophosphateheksafluorofosforanincorporatedwłączony, znajdujący się wionic bondwiązanie jonoweligandligandlinkłączyć sięmetallic bondwiązanie metalicznemoleculecząsteczka, molekułamultiple bondwiązanie wielokrotnepairparapartial chargeładunek cząstkowypolarpolarnypolarizedspolaryzowanypolyatomic ionjon wieloatomowysharedzielić, uwspólniaćsilicon dioxidewiązanie pojedynczesolidciało stałesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie pojtójne | giant structure | struktura makromolekularna |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------|
| incorporatedwłączony, znajdujący się wionic bondwiązanie jonoweligandligandlinkłączyć sięmetallic bondwiązanie metalicznemoleculecząsteczka, molekułamultiple bondwiązanie wielokrotnepairparapartial chargeładunek cząstkowypolarpolarnypolarizedspolaryzowanypolyatomic ionjon wieloatomowyshiftprzesunąćsilicon dioxidedwutlenek krzemusingle bondwiązanie pojedynczesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                 |                 |                            |
| ionic bondwiązanie jonoweligandligandlinkłączyć sięmetallic bondwiązanie metalicznemoleculecząsteczka, molekułamultiple bondwiązanie wielokrotnepairparapartial chargeładunek cząstkowypolarpolarnypolarizedspolaryzowanypolyatomic ionjon wieloatomowysharedzielić, uwspólniaćshiftprzesunąćsilicon dioxidewiązanie pojedynczesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                          | · ·             |                            |
| ligandligandligandligandlinkłączyć sięmetallic bondwiązanie metalicznemoleculecząsteczka, molekułamultiple bondwiązanie wielokrotnepairparapartial chargeładunek cząstkowypolarpolarnypolarizedspolaryzowanypolyatomic ionjon wieloatomowysharedzielić, uwspólniaćshiftprzesunąćsilicon dioxidedwutlenek krzemusingle bondwiązanie pojedynczesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                            | · · ·           |                            |
| linkłączyć sięInkłączyć sięmetallic bondwiązanie metalicznemoleculecząsteczka, molekułamultiple bondwiązanie wielokrotnepairparapartial chargeładunek cząstkowypolarpolarnypolarizedspolaryzowanypolyatomic ionjon wieloatomowysharedzielić, uwspólniaćshiftprzesunąćsilicon dioxidedwutlenek krzemusingle bondwiązanie pojedynczesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                       |                 |                            |
| metallic bondwiązanie metalicznemoleculecząsteczka, molekułamultiple bondwiązanie wielokrotnepairparapartial chargeładunek cząstkowypolarpolarnypolarizedspolaryzowanypolyatomic ionjon wieloatomowysharedzielić, uwspólniaćshiftprzesunąćsilicon dioxidewiązanie pojedynczesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                                                                             |                 |                            |
| moleculecząsteczka, molekułamultiple bondwiązanie wielokrotnepairparapartial chargeładunek cząstkowypolarpolarnypolarizedspolaryzowanypolyatomic ionjon wieloatomowysharedzielić, uwspólniaćshiftprzesunąćsilicon dioxidedwutlenek krzemusingle bondwiązanie pojedynczesolidciało stałesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                                                                  |                 |                            |
| multiple bondwiązanie wielokrotnepairparapartial chargeładunek cząstkowypolarpolarnypolarizedspolaryzowanypolyatomic ionjon wieloatomowysharedzielić, uwspólniaćshiftprzesunąćsilicon dioxidedwutlenek krzemusingle bondciało stałesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                                                                                                                      |                 |                            |
| pairparapartial chargeładunek cząstkowypolarpolarnypolarizedspolaryzowanypolyatomic ionjon wieloatomowysharedzielić, uwspólniaćshiftprzesunąćsilicon dioxidedwutlenek krzemusingle bondwiązanie pojedynczesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                                                                                                                                               |                 |                            |
| partial chargeładunek cząstkowypolarpolarnypolarizedspolaryzowanypolyatomic ionjon wieloatomowysharedzielić, uwspólniaćshiftprzesunąćsilicon dioxidedwutlenek krzemusingle bondwiązanie pojedynczesolidciało stałesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                                                                                                                                       | multiple bond   | wiązanie wielokrotne       |
| polarpolarnypolarizedspolaryzowanypolyatomic ionjon wieloatomowysharedzielić, uwspólniaćshiftprzesunąćsilicon dioxidedwutlenek krzemusingle bondwiązanie pojedynczesolidciało stałesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                                                                                                                                                                      | pair            | para                       |
| polarizedspolaryzowanypolyatomic ionjon wieloatomowysharedzielić, uwspólniaćshiftprzesunąćsilicon dioxidedwutlenek krzemusingle bondwiązanie pojedynczesolidciało stałesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                                                                                                                                                                                  | partial charge  | ładunek cząstkowy          |
| polyatomic ionjon wieloatomowysharedzielić, uwspólniaćshiftprzesunąćsilicon dioxidedwutlenek krzemusingle bondwiązanie pojedynczesolidciało stałesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                                                                                                                                                                                                        | polar           | polarny                    |
| sharedzielić, uwspólniaćshiftprzesunąćsilicon dioxidedwutlenek krzemusingle bondwiązanie pojedynczesolidciało stałesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                                                                                                                                                                                                                                      | polarized       | spolaryzowany              |
| shiftprzesunąćsilicon dioxidedwutlenek krzemusingle bondwiązanie pojedynczesolidciało stałesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                                                                                                                                                                                                                                                              | polyatomic ion  | jon wieloatomowy           |
| silicon dioxidedwutlenek krzemusingle bondwiązanie pojedynczesolidciało stałesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                                                                                                                                                                                                                                                                            | share           | dzielić, uwspólniać        |
| single bondwiązanie pojedynczesolidciało stałesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                                                                                                                                                                                                                                                                                                           | shift           | przesunąć                  |
| solidciało stałesolutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                                                                                                                                                                                                                                                                                                                                         | silicon dioxide | dwutlenek krzemu           |
| solutionroztwórto some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                                                                                                                                                                                                                                                                                                                                                         | single bond     | wiązanie pojedyncze        |
| to some extentw pewnym stopniutriple bondwiązanie potrójne                                                                                                                                                                                                                                                                                                                                                                                                                                                        | solid           | ciało stałe                |
| triple bond wiązanie potrójne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | solution        | roztwór                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to some extent  | w pewnym stopniu           |
| unpaired niesparowany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | triple bond     | wiązanie potrójne          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | unpaired        | niesparowany               |

# 4.1.3. Exercises

1. Match the appropriate phrases.

| a bond in bromine Br <sub>2</sub>                                               | acceptor                           |
|---------------------------------------------------------------------------------|------------------------------------|
| a carbon – chlorine bond in chloroform $CHCl_3$                                 | coordinate bond                    |
| a large number of atoms<br>crosslinked by covalent<br>bonds                     | giant covalent solid               |
| the carbon – sulphur bond in carbon disulphide $CS_2$                           | dipole                             |
| a charged group of a few<br>atoms linked by covalent<br>bonds                   | donor                              |
| a covalent bond                                                                 | double bond                        |
| an empty <i>d</i> -orbital in a transition metal ion                            | molecule                           |
| a neutral group of a few<br>atoms linked by covalent<br>bonds                   | non-polarized single covalent bond |
| the nitrogen – carbon bond<br>in hydrogen cyanide HCN                           | polarized single covalent bond     |
| the nitrogen atom in the ammonia molecule                                       | polyatomic ion                     |
| partial electric charges of<br>opposite sign separated by<br>a certain distance | shared electron pair               |
| the shared electron pair<br>comes from one of the<br>bonded atoms               | triple bond                        |

2. Fill in the blanks.

In the complex [Ag(CN)<sub>2</sub>]<sup>-</sup> ion, the central ...... ion is surrounded by two cyanide ...... of electron pairs, while the carbon atoms of the cyanide ions act as the ..... The metal ion is linked to the ligands by two ..... bonds.

### 4.2. Ionic and metallic bonds

When the difference in electronegativity between two bonded atoms is sufficiently large, the whole bonding pair may be transferred to the more electronegative atom. In this way a pair of ions is formed. The more electronegative atom, of high electron affinity, accepts one or more electrons to form a negative ion, an anion, whereas the less electronegative atom, of low ionization energy, loses one or more electrons to form a positive ion, a cation. Oppositely charged ions attract one another with strong electrostatic forces. This type of bond is referred to as an ionic or electrovalent bond.

In the solid state, ions are packed tightly to form a regular giant structure known as an ionic crystal. The strong intermolecular forces are reflected by the properties of ionic compounds: they are hard, brittle solids with high melting points. Sodium chloride NaCl is an example of an ionic compound. The cubic crystals of NaCl consist of alternating layers of sodium and chloride ions, where each Na<sup>+</sup> ion is surrounded by six Cl<sup>-</sup> ions and, conversely, each Cl<sup>-</sup> ion is surrounded by six Na<sup>+</sup> ions. It is important to understand that there is no such thing as an NaCl molecule: the formula 'NaCl' merely indicates that there are exactly as many sodium ions as chloride ions in the giant structure of the ionic crystal.

Metallic bonds occur in metals and metal alloys. In a solid metal, all the atoms are ionized to form cations. These ions are stacked regularly in a crystal lattice. The electrons lost as a result of ionization form a common, negatively charged cloud referred to as an 'electron sea'. The electrons are delocalized over the whole giant structure of the metallic crystal and are free to move. The 'electron sea' acts as a kind of 'negative glue' that holds the positive ions together, which otherwise would be pushed apart by repulsive forces. The 'electron sea' model explains many of the properties common to metals: conductivity of electricity and heat, malleability, ductility, as well as their grey colour (except for copper and gold) and metallic lustre.

### 4.2.1. Reading comprehension

- 1. How are valence electrons distributed in two atoms linked by an ionic bond?
- 2. What forces keep the ions in an ionic crystal together?
- 3. Do oppositely charged ions form neutral species consisting of a few atoms, such as molecules?
- 4. What are typical properties of ionic compounds?
- 5. How would you classify stainless steel?
- 6. How does the 'electron sea' model explain the internal structure of a metal?
- 7. Why do you think metals conduct electricity and heat whereas ionic crystals do not?

# 4.2.2. New terms and expressions

| act                   | działać, funkcjonować, pełnić rolę  |
|-----------------------|-------------------------------------|
| alloy                 | stop (metali)                       |
| alternating           | naprzemienny                        |
| apart                 | od siebie                           |
| aqueous               | wodny                               |
| attract, attraction   | przyciągać, przyciąganie            |
| brittle               | kruchy                              |
| chloride ion          | jon chlorkowy                       |
| common                | wspólny                             |
| conductivity          | przewodnictwo                       |
| conversely            | odwrotnie                           |
| crystal lattice       | sieć krystaliczna                   |
| cubic                 | sześcienny                          |
| delocalize            | zdelokalizować                      |
| ductility             | ciągliwość                          |
| electron affinity     | powinowactwo elektronowe            |
| electron sea          | ? [morze elektronów ?]              |
| electrostatic force   | siła elektrostatyczna               |
| electrovalent bond    | wiązanie elektrowalencyjne (jonowe) |
| explain               | tłumaczyć                           |
| formula               | wzór                                |
| glue                  | klej                                |
| hammer                | młotek                              |
| hard                  | twardy                              |
| heat                  | ciepło                              |
| hold                  | trzymać                             |
| intermolecular forces | siły międzycząsteczkowe             |
| internal              | wewnętrzny                          |
| ionic compound        | związek jonowy                      |
| ionic crystal         | kryształ jonowy                     |
| layer                 | warstwa                             |
| lustre (US luster)    | połysk                              |
| malleability          | kowalność                           |

| melting point (MP, m.p.)      | temperatura topnienia             |
|-------------------------------|-----------------------------------|
| pack                          | pakować, upakowywać               |
| push                          | pchać                             |
| reflect                       | odbijać, odzwierciedlać           |
| regular                       | uporządkowany                     |
| repulse, repulsion, repulsive | odpychać, odpychanie, odpychający |
| sodium chloride               | chlorek sodu                      |
| sodium ion                    | jon sodu                          |
| stack                         | ułożyć, upakować                  |
| stainless steel               | stal nierdzewna                   |
| sufficiently                  | wystarczająco, odpowiednio        |
| tight                         | ciasny                            |
| transfer                      | przenieść                         |

## 4.2.3. Exercises

| 1. I | 1. Indicate which statements are true (T) or false (F).                                                                                          |       |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| a.   | The formation of an ionic bond between two atoms of the same electronegativity is not possible.                                                  | T/F   |  |
| b.   | When two atoms are linked by an ionic bond, the more electronegative atom forms a cation.                                                        | T/F   |  |
| c.   | Only attractive forces operate within an ionic crystal.                                                                                          | T / F |  |
| d.   | The formula $CaCl_2$ means that in the molecule of calcium chloride, each calcium atom is linked to two chlorine atoms by single covalent bonds. | T/F   |  |
| e.   | All metals and ionic crystals are giant structures.                                                                                              | T / F |  |
| f.   | Metal cations attract one another in the crystal lattice of a metallic crystal.                                                                  | T / F |  |
| g.   | When hit by a hammer, brittle solids break up into smaller fragments, whereas malleable solids change shape but do not break up.                 | T/F   |  |

2. What properties of a metal determine its particular use? Choose from the following list: colour, ductility, electrical conductivity, thermal conductivity, high melting point, malleability, mechanical strength, metallic lustre

| a. | Aluminium in cooking pots.    |  |
|----|-------------------------------|--|
| b. | Copper in electric cables.    |  |
| C. | Silver in mirrors.            |  |
| d. | Titanium in rocket engines.   |  |
| e. | Steel in bridge construction. |  |
| f. | Gold in jewellry              |  |
| g. | Iron in hand-made horseshoes. |  |

3. Examine the structure of sodium ethanoate  $CH_3COONa$  and choose suitable answers.

| Type of entity                                                 | covalent / ionic / coordinate / metallic                                                                                                                          |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure in the solid state                                   | crystal consisting of separate molecules / a giant solid                                                                                                          |
| [Na⁺]                                                          | atomic ion / polyatomic ion / molecule                                                                                                                            |
| [CH <sub>3</sub> COO <sup>-</sup> ]                            | atomic ion / polyatomic ion / molecule                                                                                                                            |
| Carbon – hydrogen bond                                         | <ul> <li>a. slightly polarized covalent bond /<br/>highly<br/>polarized covalent bond / ionic bond</li> <li>b. single bond / double bond / triple bond</li> </ul> |
| Carbon – oxygen bond (no charge on the oxygen atom)            | <ul> <li>a. slightly polarized covalent bond /<br/>highly<br/>polarized covalent bond / ionic bond</li> <li>b. single bond / double bond / triple bond</li> </ul> |
| Carbon – oxygen bond (an electrical charge on the oxygen atom) | <ul> <li>a. slightly polarized covalent bond /<br/>highly<br/>polarized covalent bond / ionic bond</li> <li>b. single bond / double bond / triple bond</li> </ul> |

# 5. Naming Inorganic Compounds. Part I.

### Naming compounds:

When chemistry was a young science and the number of known compounds was small, it was possible to memorize their names. Many of the names were derived from their physical appearance, properties, origin or application – for example, milk of magnesia, laughing gas, limestone, caustic soda, lye, washing soda, and baking soda.

Today the number of known compounds is well over 13 million. Fortunately, it is not necessary to memorize their names. Over the years chemists have devised a clear system for naming chemical substances. The rules are accepted worldwide, facilitating communication among chemists and providing a useful way of labeling an overwhelming variety of substances.

R. Chang "Chemistry" 7<sup>th</sup> Edition, McGraw-Hill, New York 2002, p. 53

### 5.1. Types of inorganic compounds

Chemical compounds are usually classified as inorganic or organic. Organic compounds are compounds of carbon in combination with hydrogen, oxygen, nitrogen and sulphur. All other compounds are inorganic compounds. Simple compounds of carbon, such as carbon monoxide CO or carbon dioxide  $CO_2$  are classified as inorganic compounds, too.

There are four general categories of inorganic compounds: binary compounds with oxygen or hydrogen, acids, hydroxides and salts. The borderlines between these categories are not clear-cut. Hydrogen chloride HCI may be classified either as a binary compound with hydrogen or as an acid.

Binary compounds consist of two elements. Those containing oxygen are referred to as oxides that can be of a molecular or an ionic nature. Binary compounds with hydrogen have no separate class name.

Compounds that produce hydrogen ions  $H^+$  in aqueous solution are typical acids. Binary acids are compounds of hydrogen with highly electronegative elements, e.g. hydrochloric acid HCI. Oxoacids contain oxygen atom(s) in their molecules, e.g. nitric acid HNO<sub>3</sub> or sulphuric acid H<sub>2</sub>SO<sub>4</sub>. Acids are also classified as monoprotic, diprotic, triprotic, etc., depending on the number of hydrogen atoms that can be removed as  $H^+$  ions in aqueous solution.

Hydroxides are compounds of metal cations with hydroxide anions OH<sup>-</sup>. They are ionic compounds with the general formula  $M(OH)_n$ . Some hydroxides are strong bases, for example, sodium hydroxide NaOH or calcium hydroxide Ca(OH)<sub>2</sub>. They dissociate in aqueous solution to produce hydroxide ions. But many hydroxides are poorly soluble in water because of the partial covalent nature of the bonding and are only weak bases. Examples include copper(II) hydroxide Cu(OH)<sub>2</sub> or iron(III) hydroxide Fe(OH)<sub>3</sub>.

Salts are the products of neutralization reactions between acids and bases. They are ionic compounds. The dissolution of salts in water always involves their dissociation to their component ions: hydrated cations and anions.

| C <sup>4-</sup>                | carbide ion                                       |  |
|--------------------------------|---------------------------------------------------|--|
| CO                             | carbon monoxide                                   |  |
| CO <sub>2</sub>                | carbon dioxide                                    |  |
| H <sub>2</sub> CO <sub>3</sub> | carbonic acid                                     |  |
| HCO <sub>3</sub> <sup>-</sup>  | bicarbonate ion                                   |  |
| CO3 <sup>2-</sup>              | carbonate ion                                     |  |
| HCN                            | hydrogen cyanide                                  |  |
| CN                             | CN <sup>-</sup> cyanide ion                       |  |
| CNO <sup>-</sup>               | CNO <sup>-</sup> cyanate ion, also isocyanate ion |  |
| SCN                            | thiocyanate ion, also isothiocyanate ion          |  |
| CS <sub>2</sub>                | carbon disulphide                                 |  |

 Table 5.1.1. Inorganic compounds of carbon

### 5.1.1. Reading comprehension

- 1. Why is it impossible to memorize the common names of chemical compounds?
- 2. How are chemical compounds classified in general?
- 3. What does the term 'binary compound' mean?
- 4. How are acids classified?
- 5. Are all metal hydroxides bases?
- 6. How are salts formed?

# 5.1.2. New terms and expressions

| anaesthetic (US anesthetic)środek znieczulającyappearancewyglądapplicationzastosowaniebaking sodasoda oczyszczona, wodorowęglan sodu NaHCO3basezasadabicarbonatewodorowęglanbinarydwuskładnikowybinary acidkwas beztlenowycarbonatewęglikcarbonatewęglancarbonic acidkwas węglowycausticźrącycaustic sodasoda źrąca, wodorotlenek sodu NaOHclassifyklasyfikować, dzielić, zaliczać docommercialznajdujący się w handlucommunicationpołączeniecyjanate, isocyanatecyjanian, izocyjaniancyanideuwodniony, hydratowanyhydrateduwodniony, hydratowanyhydrogen chloridechlorowodórhydrogen ionjon wodorowyhydrogen ionjon wodorowyhydroxide anionjon wodorotlenekhydroxide anionjon wodorowyinorganicnieorganiczny                                                                                                                                          | acid                        | kwas                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------|
| applicationzastosowaniebaking sodasoda oczyszczona, wodorowęglan sodu NaHCO3basezasadabicarbonatewodorowęglanbinarydwuskładnikowybinary acidkwas beztlenowycarbidewęglancarbonatewęglancarbonatezrącycausticżrącycaustic sodasoda żrąca, wodorotlenek sodu NaOHclassifyklasyfikować, dzielić, zaliczać docombinationpołączeniecommunicationporzumiewanie (się)cyanate, isocyanatecyjanian, izocyjaniancyanatewyrnyślić, opracowaćdiproticdwuprotonowyfacilitateułatwiaćhydrateduwodniony, hydratowanyhydratedcyjanowdórhydrogen chloridecyjanowdórhydrostide anionjon wodorotlenek                                                                                                                                                                                                                                                                     | anaesthetic (US anesthetic) | środek znieczulający                                   |
| baking soda soda oczyszczona, wodorowęglan sodu NaHCO <sub>3</sub><br>base zasada<br>bicarbonate wodorowęglan<br>binary dwuskładnikowy<br>binary acid kwas beztlenowy<br>carbide węglik<br>carbonate węglan<br>carbonic acid kwas węglowy<br>caustic źrący<br>caustic soda soda źrąca, wodorotlenek sodu NaOH<br>classify klasyfikować, dzielić, zaliczać do<br>combination połączenie<br>commercial znajdujący się w handlu<br>communication porozumiewanie (się)<br>cyanate, isocyanate cyjanian, izocyjanian<br>cyanide cyjanek<br>detergent proszek do prania<br>devise wymyślić, opracować<br>diprotic dwuprotonowy<br>facilitate u łatwiać<br>hydrated u wodniony, hydratowany<br>hydrogen chloride cyjanowodór<br>hydrogen ion jon wodorowy<br>hydrogen ion jon wodorowy<br>hydroxide anion jon wodorotlenek<br>inhalation wdychanie, inhalacja | appearance                  | wygląd                                                 |
| basezasadabicarbonatewodorowęglanbinarydwuskładnikowybinary acidkwas beztlenowycarbidewęglikcarbonatewęglancarbonic acidkwas węglowycausticźrącycaustic sodasoda źrąca, wodorotlenek sodu NaOHclassifyklasyfikować, dzielić, zaliczać docombinationpołączeniecommunicationpołączeniecyanate, isocyanatecyjanian, izocyjaniancyanidecyjanekdetergentproszek do praniadiproticdwuprotonowyfacilitateułatwiaćhydrateduwodniony, hydratowanyhydrogen chloridecijanowodórhydrogen ionjon wodorowyhydroxide anionjon wodorotlenekhydroxide anionjon wodorotlenekhydroxide anionjon wodorotlenekhydroxide anionjon wodorotlenekowyinhalationwdychanie, inhalacja                                                                                                                                                                                              | application                 | zastosowanie                                           |
| bicarbonatewodorowęglanbinarydwuskładnikowybinary acidkwas beztlenowycarbidewęglikcarbonatewęglancarbonic acidkwas węglowycausticźrącycaustic sodasoda źrąca, wodorotlenek sodu NaOHclassifyklasyfikować, dzielić, zaliczać docombinationpołączeniecommercialznajdujący się w handlucommercialcyjanian, izocyjaniancyanate, isocyanatecyjanekdetergentproszek do praniadevisewymyślić, opracowaćdiproticdwuprotonowyfacilitateułatwiaćhydrogen cyanidecyjanowodórhydrogen cyanidecyjanowodórhydrogen ionjon wodorotlenekhydroxidewodorotlenekhydroxide anionjon wodorotlenekhydroxide anionjon wodorotlenekhydroxide anionjon wodorotlenekowyinhalationwdychanie, inhalacja                                                                                                                                                                            | baking soda                 | soda oczyszczona, wodorowęglan sodu NaHCO <sub>3</sub> |
| binary dwuskładnikowy<br>binary acid kwas beztlenowy<br>carbide węglik<br>carbonate węglan<br>carbonic acid kwas węglowy<br>caustic żrący<br>caustic żrący<br>caustic soda soda żrąca, wodorotlenek sodu NaOH<br>classify klasyfikować, dzielić, zaliczać do<br>combination połączenie<br>commercial znajdujący się w handlu<br>communication porozumiewanie (się)<br>cyanate, isocyanate cyjanian, izocyjanian<br>cyanide cyjanek<br>detergent proszek do prania<br>devise wymyślić, opracować<br>diprotic dwuprotonowy<br>facilitate ułatwiać<br>hydrogen chloride chlorowodór<br>hydrogen cyanide cyjanowodór<br>hydrogen ion jon wodorotlenek<br>modorotlenek<br>hydroxide anion jon wodorotlenekowy<br>inhalation wdychanie, inhalacja                                                                                                            | base                        | zasada                                                 |
| binary acidkwas beztlenowycarbidewęglikcarbonatewęglancarbonic acidkwas węglowycausticźrącycaustic sodasoda źrąca, wodorotlenek sodu NaOHclassifyklasyfikować, dzielić, zaliczać docombinationpołączeniecommercialznajdujący się w handlucommunicationporozumiewanie (się)cyanate, isocyanatecyjanian, izocyjaniancyanidecyjanekdetergentproszek do praniadiproticdwuprotonowyfacilitateułatwiaćhydrateduwodniony, hydratowanyhydrogen chloridechlorowodórhydrogen ionjon wodorotlenekhydroxidewodorotlenekhydroxidewodorotlenekhydroxidewodorotlenekhydroxidewodorotlenekhydroxidewodorotlenekhydroxidejon wodorotlenkowyinhalationwdychanie, inhalacja                                                                                                                                                                                               | bicarbonate                 | wodorowęglan                                           |
| carbidewęglikcarbonatewęglancarbonic acidkwas węglowycausticźrącycaustic sodasoda źrąca, wodorotlenek sodu NaOHclassifyklasyfikować, dzielić, zaliczać docombinationpołączeniecommercialznajdujący się w handlucommunicationporozumiewanie (się)cyanate, isocyanatecyjanekdetergentproszek do praniadevisewymyślić, opracowaćdiproticdwuprotonowyfacilitateułatwiaćhydrogen chloridechlorowodórhydrogen ionjon wodorotlenekhydroxidewodorotlenekhydroxide anionjon wodorotlenkowyinhalationwdychanie, inhalacja                                                                                                                                                                                                                                                                                                                                        | binary                      | dwuskładnikowy                                         |
| rocarbonatewęglancarbonic acidkwas węglowycausticźrącycaustic sodasoda źrąca, wodorotlenek sodu NaOHclassifyklasyfikować, dzielić, zaliczać docombinationpołączeniecommercialznajdujący się w handlucommunicationporozumiewanie (się)cyanate, isocyanatecyjanian, izocyjaniancyanidecyjanekdetergentproszek do praniadevisewymyślić, opracowaćdiproticdwuprotonowyfacilitateułatwiaćhydrogen chloridechlorowodórhydrogen ionjon wodorotlenekhydroxidewodorotlenekhydroxide anionjon wodorotlenkowyinhalationwdychanie, inhalacja                                                                                                                                                                                                                                                                                                                       | binary acid                 | kwas beztlenowy                                        |
| rtocarbonic acidkwas węglowycausticźrącycaustic sodasoda źrąca, wodorotlenek sodu NaOHclassifyklasyfikować, dzielić, zaliczać docombinationpołączeniecommercialznajdujący się w handlucommunicationporozumiewanie (się)cyanate, isocyanatecyjanekdetergentproszek do praniadevisewymyślić, opracowaćdiproticdwuprotonowyfacilitateuwodniony, hydratowanyhydrogen chloridecyjanowodórhydrogen ionjon wodorotlenekhydroxidewodorotlenekhydroxide anionjon wodorotlenekwydychanie, inhalacjajon wodorotlenkowy                                                                                                                                                                                                                                                                                                                                            | carbide                     | węglik                                                 |
| causticźrącycaustic sodasoda źrąca, wodorotlenek sodu NaOHclassifyklasyfikować, dzielić, zaliczać docombinationpołączeniecommercialznajdujący się w handlucommunicationporozumiewanie (się)cyanate, isocyanatecyjanian, izocyjaniancyanidecyjanekdetergentproszek do praniadiproticdwuprotonowyfacilitateuwodniony, hydratowanyhydrogen chloridecyjanowodórhydrogen ionjon wodorotlenekhydroxidewodorotlenekhydroxidewodorotlenekhydroxide anionjon wodorotlenkowy                                                                                                                                                                                                                                                                                                                                                                                     | carbonate                   | węglan                                                 |
| caustic sodasoda żrąca, wodorotlenek sodu NaOHclassifyklasyfikować, dzielić, zaliczać docombinationpołączeniecommercialznajdujący się w handlucommunicationporozumiewanie (się)cyanate, isocyanatecyjanian, izocyjaniancyanidecyjanekdetergentproszek do praniadevisewymyślić, opracowaćdiproticdwuprotonowyfacilitateułatwiaćhydrogen chloridechlorowodórhydrogen ionjon wodorotlenekhydroxidewodorotlenekhydroxide anionjon wodorotlenkowyinhalationwdychanie, inhalacja                                                                                                                                                                                                                                                                                                                                                                             | carbonic acid               | kwas węglowy                                           |
| classifyklasyfikować, dzielić, zaliczać docombinationpołączeniecommercialznajdujący się w handlucommunicationporozumiewanie (się)cyanate, isocyanatecyjanian, izocyjaniancyanidecyjanekdetergentproszek do praniadevisewymyślić, opracowaćdiproticdwuprotonowyfacilitateułatwiaćhydrogen cyanidecyjanowodórhydrogen cyanidecyjanowodórhydrogen ionjon wodorotlenekhydroxide anionjon wodorotlenkowy                                                                                                                                                                                                                                                                                                                                                                                                                                                    | caustic                     | żrący                                                  |
| combinationpołączeniecommercialznajdujący się w handlucommunicationporozumiewanie (się)cyanate, isocyanatecyjanian, izocyjaniancyanidecyjanekdetergentproszek do praniadevisewymyślić, opracowaćdiproticdwuprotonowyfacilitateułatwiaćhydragen chloridechlorowodórhydrogen cyanidecyjanowodórhydrogen ionjon wodorowyhydroxidejon wodorotlenekhydroxide anionjon wodorotlenkowyinhalationwdychanie, inhalacja                                                                                                                                                                                                                                                                                                                                                                                                                                          | caustic soda                | soda żrąca, wodorotlenek sodu NaOH                     |
| commercialznajdujący się w handlucommunicationporozumiewanie (się)cyanate, isocyanatecyjanian, izocyjaniancyanidecyjanekdetergentproszek do praniadevisewymyślić, opracowaćdiproticdwuprotonowyfacilitateułatwiaćhydragen chloridechlorowodórhydrogen chloridecyjanowodórhydrogen ionjon wodorotlenekhydroxidewodorotlenekhydroxide anionjon wodorotlenkowy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | classify                    | klasyfikować, dzielić, zaliczać do                     |
| communicationporozumiewanie (się)cyanate, isocyanatecyjanian, izocyjaniancyanidecyjanekdetergentproszek do praniadevisewymyślić, opracowaćdiproticdwuprotonowyfacilitateułatwiaćhydrateduwodniony, hydratowanyhydrogen chloridechlorowodórhydrogen ionjon wodorotlenekhydroxidejon wodorotlenkowyinhalationwdychanie, inhalacja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | combination                 | połączenie                                             |
| cyanate, isocyanatecyjanian, izocyjaniancyanidecyjanekdetergentproszek do praniadevisewymyślić, opracowaćdiproticdwuprotonowyfacilitateułatwiaćhydrateduwodniony, hydratowanyhydrogen chloridechlorowodórhydrogen ionjon wodorowyhydroxidewodorotlenekhydroxide anionjon wodorotlenkowyinhalationwdychanie, inhalacja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | commercial                  | znajdujący się w handlu                                |
| cyanidecyjanekdetergentproszek do praniadevisewymyślić, opracowaćdiproticdwuprotonowyfacilitateułatwiaćhydrateduwodniony, hydratowanyhydrogen chloridechlorowodórhydrogen cyanidecyjanowodórhydrogen ionjon wodorowyhydroxidewodorotlenekhydroxide anionjon wodorotlenkowyinhalationwdychanie, inhalacja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | communication               | porozumiewanie (się)                                   |
| detergentproszek do praniadevisewymyślić, opracowaćdiproticdwuprotonowyfacilitateułatwiaćhydrateduwodniony, hydratowanyhydrogen chloridechlorowodórhydrogen cyanidecyjanowodórhydrogen ionjon wodorowyhydroxidewodorotlenekhydroxide anionjon wodorotlenkowy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cyanate, isocyanate         | cyjanian, izocyjanian                                  |
| devisewymyślić, opracowaćdiproticdwuprotonowyfacilitateułatwiaćhydrateduwodniony, hydratowanyhydrogen chloridechlorowodórhydrogen cyanidecyjanowodórhydrogen ionjon wodorowyhydroxidewodorotlenekhydroxide anionjon wodorotlenkowy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cyanide                     | cyjanek                                                |
| diproticdwuprotonowyfacilitateułatwiaćhydrateduwodniony, hydratowanyhydrogen chloridechlorowodórhydrogen cyanidecyjanowodórhydrogen ionjon wodorowyhydroxidewodorotlenekhydroxide anionjon wodorotlenkowyinhalationwdychanie, inhalacja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | detergent                   | proszek do prania                                      |
| facilitateułatwiaćhydrateduwodniony, hydratowanyhydrogen chloridechlorowodórhydrogen cyanidecyjanowodórhydrogen ionjon wodorowyhydroxidewodorotlenekhydroxide anionjon wodorotlenkowyinhalationwdychanie, inhalacja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | devise                      | wymyślić, opracować                                    |
| hydrateduwodniony, hydratowanyhydrogen chloridechlorowodórhydrogen cyanidecyjanowodórhydrogen ionjon wodorowyhydroxidewodorotlenekhydroxide anionjon wodorotlenkowyinhalationwdychanie, inhalacja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | diprotic                    | dwuprotonowy                                           |
| hydrogen chloridechlorowodórhydrogen cyanidecyjanowodórhydrogen ionjon wodorowyhydroxidewodorotlenekhydroxide anionjon wodorotlenkowyinhalationwdychanie, inhalacja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | facilitate                  | ułatwiać                                               |
| hydrogen cyanidecyjanowodórhydrogen ionjon wodorowyhydroxidewodorotlenekhydroxide anionjon wodorotlenkowyinhalationwdychanie, inhalacja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hydrated                    | uwodniony, hydratowany                                 |
| hydrogen ionjon wodorowyhydroxidewodorotlenekhydroxide anionjon wodorotlenkowyinhalationwdychanie, inhalacja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hydrogen chloride           | chlorowodór                                            |
| hydroxidewodorotlenekhydroxide anionjon wodorotlenkowyinhalationwdychanie, inhalacja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hydrogen cyanide            | cyjanowodór                                            |
| hydroxide anionjon wodorotlenkowyinhalationwdychanie, inhalacja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hydrogen ion                | jon wodorowy                                           |
| inhalation wdychanie, inhalacja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hydroxide                   | wodorotlenek                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hydroxide anion             | jon wodorotlenkowy                                     |
| inorganic nieorganiczny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inhalation                  | wdychanie, inhalacja                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | inorganic                   | nieorganiczny                                          |
| labelling (US labeling) oznakować, nadać etykietę (tu: nadać nazwę)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | labelling (US labeling)     | oznakować, nadać etykietę (tu: nadać nazwę)            |

| laughing gas                      | gaz rozweselający, podtlenek azotu N <sub>2</sub> O         |
|-----------------------------------|-------------------------------------------------------------|
| limestone                         | wapień, węglan wapnia CaCO <sub>3</sub>                     |
| lye                               | ług (wodny roztwór mocnej zasady)                           |
| memorize                          | zapamiętać                                                  |
| mild                              | łagodny                                                     |
| milk of magnesia                  | wodna zawiesina wodorotlenku magnezu<br>Mg(OH) <sub>2</sub> |
| monoprotic                        | jednoprotonowy                                              |
| neutralization                    | zobojętnienie                                               |
| nitric acid                       | kwas azotowy                                                |
| organic                           | organiczny                                                  |
| overwhelming                      | przeważający                                                |
| oxide                             | tlenek                                                      |
| oxoacid                           | kwas tlenowy                                                |
| physical                          | fizyczny                                                    |
| poorly                            | słabo                                                       |
| provide                           | zapewniać, dostarczać                                       |
| rule                              | zasada                                                      |
| salt                              | sól                                                         |
| softener                          | zmiękczacz                                                  |
| sulphide (US sulfide)             | siarczek                                                    |
| sulphuric acid (US sulfuric acid) | kwas siarkowy                                               |
| thiocyanate, isothiocyanate       | tiocyjanian, rodanek, izotiocyjanian                        |
| treatment                         | leczenie                                                    |
| triprotic                         | trójprotonowy                                               |
| useful                            | użyteczny                                                   |
| variety                           | różnorodność                                                |
| washing soda                      | soda, soda kalcynowana, węglan sodu Na $_2$ CO $_3$         |
| worldwide                         | na całym świecie                                            |

### 5.1.3. Exercises

1. Which expressions correctly describe the following compounds? Choose as many expressions as possible from the following list: binary acid, binary compound, diprotic acid, metal hydroxide, monoprotic acid, oxoacid, poorly soluble in water, readily soluble in water, salt, strong acid, strong base, triprotic acid, weak acid, weak base.

| кон                            |  |
|--------------------------------|--|
| HBr                            |  |
| H <sub>2</sub> CO <sub>3</sub> |  |
| NH <sub>3</sub>                |  |
| Cu(OH) <sub>2</sub>            |  |

2. Match the common names of the substances with their descriptions.

| baking soda         | a mildly alkaline solution used in the treatment of indigestion |
|---------------------|-----------------------------------------------------------------|
| laughing gas        | a strongly alkaline, caustic solution                           |
| limestone           | the rocks from which, e.g. the Pieniny mountains, are formed    |
| lye                 | a white powder used when baking cakes, pies etc.                |
| milk of<br>magnesia | a white solid used as a water softener in commercial detergents |
| washing soda        | an inhalational anaesthetic used by dentists                    |

### 5.2. Binary compounds with hydrogen

Molecular compounds of elements with hydrogen usually have traditional common names. They include such compounds as methane  $CH_4$ , ammonia  $NH_3$  or water  $H_2O$ .

Metal compounds with hydrogen are ionic in nature: they consist of metal cations and hydride anions  $H^{-}$ . They are therefore classified as hydrides, for example, sodium hydride NaH or calcium hydride CaH<sub>2</sub>.

| LiH                           | lithium hydride                              |
|-------------------------------|----------------------------------------------|
| NaH                           | sodium hydride                               |
| CaH <sub>2</sub>              | calcium hydride                              |
| B <sub>2</sub> H <sub>6</sub> | diborane                                     |
| NaBH <sub>4</sub>             | sodium borohydride, sodium tetrahydroborate* |
| LiAIH <sub>4</sub>            | lithium aluminium hydride*                   |
| CH <sub>4</sub>               | methane                                      |
| SiH <sub>4</sub>              | silane                                       |
| NH <sub>3</sub>               | ammonia                                      |
| $N_2H_4$                      | hydrazine                                    |
| PH <sub>3</sub>               | phosphine                                    |
| AsH <sub>3</sub>              | arsine                                       |
| SbH <sub>3</sub>              | stibine                                      |
| H <sub>2</sub> O              | water                                        |
| H <sub>2</sub> S              | hydrogen sulphide                            |
| H <sub>2</sub> Se             | hydrogen selenide                            |
| H <sub>2</sub> Te             | hydrogen telluride                           |
| HF                            | hydrogen fluoride                            |
| HCI                           | hydrogen chloride                            |
| HBr                           | hydrogen bromide                             |
| Н                             | hydrogen iodide                              |
| *A ternary compound           |                                              |

 Table 5.2.1. Common binary compounds with hydrogen

# 5.2.1. Reading comprehension

- 1. What is the difference between binary compounds of hydrogen with metals and non-metals?
- 2. What name do we give to compounds of metals and hydrogen?

### 5.2.2. New terms and expressions

| ammonia                   | amoniak                              |
|---------------------------|--------------------------------------|
| analogue (US analog)      | analog                               |
| arsine                    | arsyna, arsenowodór                  |
| borohydride               | borowodorek, tetrahydroboran         |
| burn                      | palić (się)                          |
| colourless (US colorless) | bezbarwny                            |
| common name               | nazwa zwyczajowa                     |
| contact                   | kontakt, zetknięcie                  |
| diborane                  | diboran                              |
| extremely                 | w najwyższym stopniu                 |
| flame                     | płomień                              |
| freely                    | swobodnie                            |
| hydrazine                 | hydrazyna                            |
| hydride                   | wodorek                              |
| hydrogen bromide          | bromowodór (dosł. bromek wodoru)     |
| hydrogen chloride         | chlorowodór (dosł. chlorek wodoru)   |
| hydrogen fluoride         | fluorowodór (dosł. fluorek wodoru)   |
| hydrogen iodide           | jodowodór (dosł. jodek wodoru)       |
| hydrogen selenide         | selenowodór (dosł. selenek wodoru)   |
| hydrogen sulphide         | siarkowodór (dosł. siarczek wodoru)  |
| hydrogen telluride        | tellurowodór (dosł. tellurek wodoru) |
| ignite                    | zapalać (się)                        |
| irritating                | drażniący                            |
| methane                   | metan                                |
| phosphine                 | fosfina, fosforowodór, fosforiak     |
| reducing agent            | reduktor (substancja redukująca)     |
| resemble                  | przypominać (być podobnym do)        |
| rot                       | gnić                                 |

| silane   | silan                  |
|----------|------------------------|
| soluble  | rozpuszczalny          |
| solution | roztwór                |
| stibine  | stybina, antymonowodór |
| ternary  | trójskładnikowy        |
| toxic    | trujący                |
| water    | woda                   |

### 5.2.3. Exercise

1. Give the names of the following hydrogen compounds:

| A colourless gas with an irritating odour, freely soluble in water, producing an alkaline solution.                                                                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A gas of very unpleasant smell, toxic, ignites on contact with air.                                                                                                      |  |
| A colourless gas with an irritating odour, freely<br>soluble in water, producing a strongly acidic<br>solution; decomposes at high temperatures to give<br>a violet gas. |  |
| An extremely toxic gas with an unpleasant smell resembling that of rotten eggs.                                                                                          |  |
| A heavier analogue of methane.                                                                                                                                           |  |
| A common reducing agent in organic chemistry.                                                                                                                            |  |
| Burns with a green flame.                                                                                                                                                |  |

### 5.3. Metal oxides and hydroxides

Binary compounds of elements with oxygen are termed 'oxides'. Metal oxides are generally ionic compounds. They are named by giving first the name of the metal and then 'oxide', for example, magnesium oxide MgO or aluminium oxide  $Al_2O_3$ . If one metal can form more than one type of oxide, the charge on the metal cation (or the valence of the metal) is specified in parentheses just after the metal name (no space!), e.g. manganese(II) oxide MnO and manganese(III) oxide  $Mn_2O_3$ . In older nomenclature, metal ions with fewer positive charges were given the ending *-ous*,

and those with more positive charges the ending -ic. Accordingly, iron(II) oxide FeO and iron(III) oxide Fe<sub>2</sub>O<sub>3</sub> were named ferrous oxide and ferric oxide respectively. For oxidation states of four and more, metal oxides were named by placing prefixes *di*-, *tri*- etc. before 'oxide', for example, manganese dioxide MnO<sub>2</sub> or vanadium pentoxide V<sub>2</sub>O<sub>5</sub>.

| Co <sup>2+</sup> | cobalt(II)    | cobaltous |
|------------------|---------------|-----------|
| Cr <sup>3+</sup> | chromium(III) | chromic   |
| Cu⁺              | copper(I)     | cuprous   |
| Cu <sup>2+</sup> | copper(II)    | cupric    |
| Fe <sup>2+</sup> | iron(II)      | ferrous   |
| Fe <sup>3+</sup> | iron(III)     | ferric    |
| Hg <sup>2+</sup> | mercury(II)   | mercuric  |
| $Hg_{2}^{2+}$    | mercury(I)    | mercurous |
| Mn <sup>2+</sup> | manganese(II) | manganous |
| Pb <sup>2+</sup> | lead(II)      | plumbous  |
| Sn <sup>2+</sup> | tin(II)       | stannous  |

 Table 5.3.1. Traditional names of common metal ions according to the older nomenclature

Names of metal hydroxides are derived in a similar way, by placing 'hydroxide' after the name of the metal ion, e.g. potassium hydroxide KOH, calcium hydroxide  $Ca(OH)_2$ , or iron(III) hydroxide  $Fe(OH)_3$  (ferric hydroxide). Hydroxides of alkali metals and alkaline earth metals are strong bases, wheras those of other metals exhibit only weakly basic properties. Some hydroxides, such as aluminium or zinc hydroxides are amphoteric: they react with both acids and bases to give the corresponding salts.

### 5.3.1. Reading comprehension

- 1. How are binary compounds of metals and oxygen named?
- 2. What are the other names of copper(I) and copper(II) oxides?
- 3. What is the name of the  $OH^{-}$  ion?
- 4. What does it mean that  $AI(OH)_3$  is amphoteric?

# 5.3.2. New terms and expressions

| accordingly     | zgodnie z powyższym            |
|-----------------|--------------------------------|
| amphoteric      | amfoteryczny                   |
| chromic         | chromowy                       |
| cobaltous       | kobaltawy                      |
| corresponding   | odpowiedni, odpowiadający      |
| cupric          | miedziowy                      |
| cuprous         | miedziawy                      |
| dioxide         | dwutlenek                      |
| excess          | nadmiar                        |
| ferric          | żelazowy                       |
| ferrous         | żelazawy                       |
| manganous       | manganawy                      |
| mercuric        | rtęciowy                       |
| mercurous       | rtęciawy                       |
| oxidation state | stopień utlenienia             |
| parentheses     | nawiasy                        |
| pentoxide       | pięciotlenek                   |
| plumbous        | ołowiawy                       |
| precipitate     | osad                           |
| prefix          | przedrostek                    |
| space           | spacja                         |
| specify         | podać, określić, wyszczególnić |
| stannous        | cynawy                         |
| valence         | wartościowość                  |

# 5.3.3. Exercises

1. Give all the possible names of the following oxides and hydroxides:

| AI(OH) <sub>3</sub> |  |
|---------------------|--|
| Cr(OH) <sub>3</sub> |  |
| CrO <sub>3</sub>    |  |
| Cu <sub>2</sub> O   |  |
| Hg <sub>2</sub> O   |  |
| HgO                 |  |
| Mn(OH) <sub>2</sub> |  |
| NaOH                |  |
| TiO <sub>2</sub>    |  |
| ZnO                 |  |

# 2. Fill in the blanks:

.

| The addition of                       | NaOH to a solution of a                         |
|---------------------------------------|-------------------------------------------------|
| zinc salt produces a wh               | ite precipitate of                              |
| Zn(OH) <sub>2</sub> . The precipitate | in an excess of the reagent. It is also soluble |
| in                                    | HCI. This means that $Zn(OH)_2$ is              |

# 6. Naming Inorganic Compounds. Part II.

### 6.1. The oxides of non-metals

The oxides of non-metals are covalent compounds, usually with a molecular structure, for example, sulphur dioxide  $SO_2$  or phosphorus pentoxide  $P_4O_{10}$ . Some of them, such as silicon dioxide  $SiO_2$ , form giant macromolecular structures.

The names of these compounds are formed by indicating the number of oxygen atoms linked to the non-metal atom in the molecule rather than by specifying the oxidation state of the non-metal. So the compound NO is called nitrogen monoxide rather than nitrogen(II) oxide and SO<sub>3</sub> is sulphur trioxide rather than sulphur(VI) oxide. The names of the most common non-metal oxides are listed below. Note how the oxides of elements in an odd-numbered oxidation state used to be named in the older nomenclature.

| Oxide                          | Systematic name              | Other names                               |
|--------------------------------|------------------------------|-------------------------------------------|
| CO                             | carbon monoxide              | carbonic oxide, coal gas                  |
| CO <sub>2</sub>                | carbon dioxide               | dry ice (solid)                           |
| $N_2O$                         | dinitrogen monoxide          | nitrous oxide, laughing gas               |
| NO                             | nitrogen monoxide            | nitric oxide                              |
| $N_2O_3$                       | dinitrogen trioxide          | nitrogen trioxide                         |
| NO <sub>2</sub>                | nitrogen dioxide             |                                           |
| $N_2O_4$                       | dinitrogen tetroxide         | nitrogen tetroxide, nitrogen peroxide     |
| $N_2O_5$                       | dinitrogen pentoxide         | nitrogen pentoxide                        |
| OF <sub>2</sub>                | oxygen fluoride              |                                           |
| SiO <sub>2</sub>               | silicon dioxide              |                                           |
| P <sub>4</sub> O <sub>10</sub> | tetraphosphorus<br>decaoxide | phosphorus pentoxide, phosphorus(V) oxide |
| SO <sub>2</sub>                | sulphur dioxide              | sulphur(IV) oxide                         |
| SO <sub>3</sub>                | sulphur trioxide             | sulphur(VI) oxide                         |
| Cl <sub>2</sub> O              | dichlorine monoxide          |                                           |
| CIO <sub>2</sub>               | chlorine dioxide             |                                           |
| $CI_2O_7$                      | dichlorine heptoxide         | chlorine(VII) oxide                       |

 Table 5.3.1. Names of common non-metal oxides

Many non-metal oxides are acid anhydrides, since they react with water to produce acids. Here are two examples:

 $\begin{array}{rcl} \mathrm{SO}_3(g) & + & \mathrm{H}_2\mathrm{O}(\mathit{I}) & \to & \mathrm{H}_2\mathrm{SO}_4(aq) \\ \mathrm{sulphur trioxide} & \mathrm{water} & & \mathrm{sulphuric acid} \\ \mathrm{N}_2\mathrm{O}_5(g) & + & \mathrm{H}_2\mathrm{O}(\mathit{I}) & \to & 2\,\mathrm{HNO}_3(aq) \\ \mathrm{dinitrogen pentoxide} & \mathrm{water} & & \mathrm{nitric acid} \end{array}$ 

### 6.1.1. Reading comprehension

- 1. What is the difference between metal oxides and non-metal oxides?
- 2. Do we usually specify the oxidation state of a non-metal when naming its oxide?

### 6.1.2. New terms and expressions

(The Polish terms for most of the specific compounds are omitted).

| anhydride            | bezwodnik                   |
|----------------------|-----------------------------|
| carbon monoxide      | tlenek węgla (czad)         |
| chemical equation    | równanie reakcji chemicznej |
| dioxide              | dwutlenek                   |
| engine               | silnik                      |
| exhaust              | wydech (w samochodzie)      |
| harmful              | szkodliwy                   |
| incomplete           | niezupełny, częściowy       |
| macromolecular       | wielkocząsteczkowy          |
| monoxide             | tlenek (monotlenek)         |
| odd (odd-numbered)   | nieparzysty                 |
| oxidize              | utleniać                    |
| pentoxide            | pięciotlenek                |
| petrol (US gasoline) | benzyna                     |
| radical              | rodnik                      |
| source               | źródło                      |
| tetroxide            | czterotlenek                |
| trioxide             | trójtlenek                  |
| vapour (US vapor)    | para (stan gazowy)          |

### 6.1.3. Exercise

1. Fill in the blanks.

### 6.2. Acids and their anions.

Some binary compounds of non-metals behave like acids in aqueous solution. For example, an aqueous solution of hydrogen chloride is a strong acid, so it is termed hydrochloric acid. The names of other binary acids are derived in a similar way. The names of the anions formed by binary acids end in *–ide*: so the anion of hydrochloric acid is the chloride ion Cl<sup>-</sup>, that of hydrosulphuric acid is the sulphide ion  $S^{2-}$ , etc.

The names of oxoacids are formed by adding -ic to the name of the central element, e.g. sulphuric acid H<sub>2</sub>SO<sub>4</sub> or chloric acid HClO<sub>3</sub>. The names of the anions formed by such acids end in -ate: sulphate SO<sub>4</sub><sup>2-</sup>, chlorate ClO<sub>3</sub><sup>-</sup>.

Often, the central element of an oxoacid can exist in several oxidation states, giving rise to a number of different oxoacids. The rules for naming such acids and their anions are as follows:

| Number of oxygen<br>atoms compared to<br>the <i>–ic</i> acid | Prefix<br>(acid and<br>anion) | Ending<br>(acid) | Ending<br>(anion) | Example                                                                 |
|--------------------------------------------------------------|-------------------------------|------------------|-------------------|-------------------------------------------------------------------------|
| one more                                                     | per-                          | -ic              | -ate              | perchloric acid HClO <sub>4</sub><br>perchlorate anion ClO <sub>4</sub> |
| the same                                                     |                               | -ic              | -ate              | chloric acid HClO <sub>3</sub> chlorate anion $ClO_3^{-1}$              |
| one less                                                     |                               | -ous             | -ite              | chlorous acid $HClO_2$<br>chlorite anion $ClO_2^-$                      |
| two less                                                     | hypo-                         | -ous             | -ite              | hypochlorous acid HClO<br>hypochlorite anion ClO <sup>-</sup>           |

The more modern naming system, using the ending *-ate* for all oxoacids and giving the oxidation state of the central element as a Roman numeral, is still in limited use in English nomenclature. For example, sulphuric acid and sulphurous acid are usually preferred to sulphuric(VI) acid and sulphuric(IV) acid.

## 6.2.1. Reading comprehension

- 1. What acid is formed when hydrogen chloride is dissolved in water?
- 2. What are the salts of hydrosulphuric acid called?
- 3. What are the names of the oxoacids formed by chlorine?
- 4. Why do you think the modern names of sulphurous and sulphuric acid may be confusing?

**Table 6.2.1.** The names of common acids and their anions. The names according to the modern nomenclature are given only when they differ from those in the older nomenclature.

| Acid                           | Name (old)     | Name (modern)   | Anion                                            | Name (old)   | Name (modern)  |
|--------------------------------|----------------|-----------------|--------------------------------------------------|--------------|----------------|
|                                |                |                 | B <sup>3-</sup>                                  | boride       |                |
| H <sub>3</sub> BO <sub>3</sub> | boronic        |                 | BO <sub>3</sub> <sup>3-</sup>                    | borate       |                |
|                                |                |                 | BO <sub>3</sub> <sup>3-</sup><br>C <sup>4-</sup> | carbide      |                |
| $H_2CO_3$                      | carbonic       |                 | CO <sub>3</sub> <sup>2-</sup><br>N <sup>3-</sup> | carbonate    |                |
|                                |                |                 | N <sup>3-</sup>                                  | nitride      |                |
| HNO <sub>2</sub>               | nitrous        | nitric(III)     | NO <sub>2</sub> <sup>-</sup>                     | nitrite      | nitrate(III)   |
| HNO <sub>3</sub>               | nitric         | nitric(V)       | NO <sub>3</sub> <sup>-</sup>                     | nitrate      | nitrate(V)     |
| HF                             | hydrofluoric   |                 | F <sup>-</sup>                                   | fluoride     |                |
|                                |                |                 | [AI(OH) <sub>4</sub> ] <sup>-</sup>              | aluminate    |                |
|                                |                |                 | Si <sup>4-</sup>                                 | silicide     |                |
| $H_2SiO_3$                     | silicic        |                 | SO <sub>3</sub> <sup>2-</sup><br>P <sup>3-</sup> | silicate     |                |
|                                |                |                 | P <sup>3-</sup>                                  | phosphide    |                |
| H <sub>3</sub> PO <sub>3</sub> | phosphorous    | phosphoric(III) | PO3 <sup>3-</sup>                                | phosphite    | phosphate(III) |
| H <sub>3</sub> PO <sub>4</sub> | phosphoric     | phosphoric(V)   | PO4 <sup>3-</sup>                                | phosphate    | phosphate(V)   |
| $H_2S$                         | hydrosulphuric |                 | S <sup>2-</sup>                                  | sulphide     |                |
| H <sub>2</sub> SO <sub>3</sub> | sulphurous     | sulphuric(IV)   | SO32-                                            | sulphite     | sulphate(IV)   |
| $H_2SO_4$                      | sulphuric      | sulphuric(VI)   | SO4 <sup>2-</sup>                                | sulphate     | sulphate(VI)   |
| HCI                            | hydrochloric   |                 | CI                                               | chloride     |                |
| HCIO                           | hypochlorous   | chloric(I)      | CIO                                              | hypochlorite | chlorate(I)    |
| HCIO <sub>2</sub>              | chlorous       | chloric(III)    | CIO <sub>2</sub>                                 | chlorite     | chlorate(III)  |
| HCIO <sub>3</sub>              | chloric        | chloric(V)      |                                                  | chlorate     | chlorate(V)    |
| HCIO <sub>4</sub>              | perchloric     | chloric(VII)    |                                                  | perchlorate  | chlorate(VII)  |
|                                |                |                 | [Cr(OH) <sub>4</sub> ] <sup>-</sup>              | chromite     | chromate(III)  |
|                                |                |                 | CrO <sub>4</sub> <sup>2-</sup>                   | chromate     | chromate(VI)   |
|                                |                |                 | $Cr_2O_7^{2-}$                                   | dichromate   | dichromate(VI) |
|                                |                |                 | MnO <sub>4</sub> <sup>2-</sup>                   | manganate    | manganate(VI)  |
|                                |                |                 | MnO <sub>4</sub> <sup>-</sup>                    | permanganate | manganate(VII) |
| $H_3AsO_3$                     | arsenous       | arsenic(III)    | AsO <sub>3</sub> <sup>3-</sup>                   | arsenite     | arsenate(III)  |
| $H_3AsO_4$                     | arsenic        | arsenic(V)      | AsO <sub>4</sub> <sup>3-</sup>                   | arsenate     | arsenate(IV)   |
| HBr                            | hydrobromic    |                 | Br                                               | bromide      |                |
| HBrO                           | hypobromous    | bromic(I)       | BrO                                              | hypobromite  | bromate(I)     |
| HBrO <sub>2</sub>              | bromous        | bromic(III)     | BrO <sub>2</sub>                                 | bromite      | bromate(III)   |
| HBrO <sub>3</sub>              | bromic         | bromic(V)       | BrO <sub>3</sub> <sup>-</sup>                    | bromate      | bromate(V)     |
| HBrO <sub>4</sub>              | perbromic      | bromic(VII)     | BrO <sub>4</sub> <sup>-</sup>                    | perbromate   | bromate(VII)   |
|                                |                |                 | MoO <sub>4</sub> <sup>2-</sup>                   | molybdate    | molybdate(VI)  |
|                                |                |                 | SnO <sub>3</sub> <sup>2-</sup>                   | stannate     | stannate(VI)   |
| HI                             | hydriodic      |                 | ſ                                                | iodide       |                |
| HIO                            | hypoiodous     | iodic(I)        | 10                                               | hypoiodite   | iodate(I)      |
| HIO <sub>2</sub>               | iodous         | iodic(III)      | 10 <sub>2</sub> <sup>-</sup>                     | iodite       | iodate(III)    |
| HIO <sub>3</sub>               | iodic          | iodic(V)        | 10 <sub>3</sub> <sup>-</sup>                     | iodate       | iodate(V)      |
| HIO <sub>4</sub>               | periodic       | iodic(VII)      | IO <sub>4</sub>                                  | periodate    | iodate(VII)    |
|                                | -              |                 | PbO <sub>3</sub> <sup>2-</sup>                   | plumbate     | plumbate(IV)   |

## 6.2.2. New terms and expressions

| hydroic acid  | kwaswodorowy (wyj. kwas solny) |
|---------------|--------------------------------|
| ide           | ek (sól kwasu beztlenowego)    |
| ic acid       | kwasowy                        |
| ate           | an (sól kwasu tlenowego)       |
| peric acid    | kwas nadowy                    |
| perate        | nadan (sól kwasu tlenowego)    |
| ous acid      | kwasawy                        |
| ite           | yn (sól kwasu tlenowego)       |
| hypoous acid  | kwas podawy                    |
| hypoite       | podyn (sól kwasu tlenowego)    |
| Roman numeral | liczba rzymska                 |
| still         | wciąż                          |

(The Polish terms for most of the specific compounds are omitted).

# 6.2.3. Exercise

1. Give the names of the following compounds.

| an acid producing a Cl <sup>-</sup> ion in aqueous solution          |  |
|----------------------------------------------------------------------|--|
| the anions formed when chlorine is dissolved in alkaline solution    |  |
| a binary acid formed by iodine                                       |  |
| heavier analogues of the $MnO_4^-$ ion                               |  |
| the $NO_2^-$ ion                                                     |  |
| oxoacids of bromine in the lowest and in the highest oxidation state |  |
| oxoacids of sulphur                                                  |  |

### 6.3. Salts

Salts are named by first giving the name of the cation and then the name of the anion. Examples are magnesium bromide MgBr<sub>2</sub>, iron(III) sulphate  $Fe_2(SO_4)_3$  or ammonium dichromate (NH<sub>4</sub>)<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>.

Polyprotic acids may form anions by losing one, two, etc. hydrogen ions respectively. In this case, the number of hydrogen atoms left in the anion is indicated in this name. For example, phosphoric acid  $H_3PO_4$  can form three types of anions: dihydrogen phosphate  $H_2PO_4^-$ , hydrogen phosphate  $HPO_4^{2-}$  and phosphate  $PO_4^{3-}$ . The salts are named accordingly.

In the case of salts containing more than two types of cations, all the ions are specified in the name: potassium aluminium sulphate  $KAI(SO_4)_2$  or calcium magnesium carbonate  $CaMg(CO_3)_2$ . Hydrated salts contain water incorporated in the crystal lattice. The specific number of water molecules in the salt formula is indicated by the appropriate description: dihydrate, trihydrate, etc. Copper(II) sulphate pentahydrate  $CuSO_4 \cdot 5H_2O$  is blue, while anhydrous  $CuSO_4$  is white.

#### 6.3.1. Reading comprehension

- 1. How are the names of salts formed?
- 2. What do we call the compound MgSO<sub>4</sub>?
- 3. What are the names of the salts  $NaH_2PO_4$  and  $K_2HPO_4$ ?
- 4. What colour change takes place when hydrated copper sulphate is heated?

| HCO <sub>3</sub> <sup>-</sup>  | hydrogen carbonate, bicarbonate |  |
|--------------------------------|---------------------------------|--|
| H <sub>2</sub> PO <sub>4</sub> | dihydrogen phosphate            |  |
| HPO <sub>4</sub> <sup>2-</sup> | hydrogen phosphate              |  |
| HS                             | hydrogen sulphide, bisulphide   |  |
| HSO <sub>3</sub> <sup>-</sup>  | hydrogen sulphite, bisulphite   |  |
| HSO4 <sup>-</sup>              | hydrogen sulphate, bisulphate   |  |

 Table 6.3.1.
 Common anions containing hydrogen atoms.

| Table 6.3.2. Examples of hydrated salts |
|-----------------------------------------|
|-----------------------------------------|

| LiCl · H <sub>2</sub> O                               | lithium chloride monohydrate                                              |
|-------------------------------------------------------|---------------------------------------------------------------------------|
| $CaSO_4 \cdot 2 H_2O$                                 | calcium sulphate dihydrate, gypsum                                        |
| K <sub>2</sub> HPO <sub>4</sub> · 3 H <sub>2</sub> O  | potassium hydrogen phosphate trihydrate                                   |
| FeCl <sub>2</sub> · 4 H <sub>2</sub> O                | iron(II) chloride tetrahydrate, ferrous chloride tetrahydrate             |
| $CuSO_4 \cdot 5 H_2O$                                 | copper(II) sulphate pentahydrate, cupric sulphate pentahydrate, bluestone |
| $NiSO_4 \cdot 6 H_2O$                                 | nickel(II) sulphate hexahydrate                                           |
| MgSO <sub>4</sub> · 7 H <sub>2</sub> O                | magnesium sulphate heptahydrate, Epsom salt                               |
| Na <sub>2</sub> CO <sub>3</sub> · 10 H <sub>2</sub> O | sodium carbonate decahydrate, washing soda                                |

# 6.3.2. New terms and expressions

(The Polish terms for most of the specific compounds are omitted)

| biate         | wodoroan               |
|---------------|------------------------|
| biide         | wodoroek               |
| hydrogenate   | wodoroan               |
| hydrogenide   | wodoroek               |
| dihydrogenate | diwodoroan             |
| polyprotic    | wieloprotonowy         |
| ammonium      | amonu, amonowy         |
| bluestone     | siny kamień            |
| contain       | zawierać               |
| description   | opis                   |
| Epsom salt    | sól angielska, epsomit |
| gypsum        | gips                   |
| hydrate       | hydrat                 |
| hydrated      | uwodniony, hydratowany |

# 6.3.3. Exercises

1. Give the names of the following salts.

| FeS                                                                    |  |
|------------------------------------------------------------------------|--|
| FeSO <sub>4</sub>                                                      |  |
| CuCr <sub>2</sub> O <sub>7</sub>                                       |  |
| LilO <sub>4</sub>                                                      |  |
| Hg <sub>2</sub> Br <sub>2</sub>                                        |  |
| KH <sub>2</sub> PO <sub>4</sub>                                        |  |
| NaHSO <sub>3</sub>                                                     |  |
| $AIF_3 \cdot H_2O$                                                     |  |
| NH <sub>4</sub> AI(SO <sub>4</sub> ) <sub>2</sub> · 12H <sub>2</sub> O |  |

2. Give the names of salts according to their colour, then give their formulae. Choose your answers from the following list: chromium(III) nitrate nonahydrate, cobaltous chloride dihydrate, copper(II) sulphate pentahydrate, ferric chloride hexahydate, ferrous chloride tetrahydrate, iron(III) ammonium sulphate dodecahydrate, manganese(II) nitrate tetrahydrate, nickel chloride hexahydrate, potassium dichromate, potassium permanganate, sodium chromate

| Colour          | Name | Formula |
|-----------------|------|---------|
| deep purple     |      |         |
| dark blue       |      |         |
| blue            |      |         |
| green           |      |         |
| pale green      |      |         |
| yellow          |      |         |
| orange          |      |         |
| deep red        |      |         |
| pink            |      |         |
| pale pink, rose |      |         |
| violet          |      |         |

# 7. Organic Molecules

## 7.1. Chemical formulae

Organic compounds are usually molecular compounds. Chemists represent molecules graphically as formulae. There are several types of chemical formulae:

**Empirical formula** – this gives the ratio of atoms expressed as the smallest whole number, e.g.  $C_2H_4O$ 

**Molecular formula** – this gives the actual numbers of all the atoms in the molecule, e.g.  $C_4H_8O_2$ 

**Structural formula** – this shows how the atoms are connected (but does not represent the actual shape of the molecule!). There are three types of structural formula:

| <b>Expanded formula</b><br>All the bonds are shown as<br>dashes and all the atoms are<br>shown as symbols. | $H \xrightarrow{H} G \xrightarrow{H} G \xrightarrow{H} H$                                                                        |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| <b>Condensed formula</b><br>Not all the bonds are shown;<br>the atoms are shown in<br>groups.              | $H_3C$ — $CH_2$ — $CH_3CH_2CH_2$ — $COOH$ $CH_3(CH_2)_2COOH$ $C_3H_7CO_2H$ |  |
| Skeletal structures (bond-<br>line formulae)<br>Only the carbon skeleton and<br>heteroatoms are shown.     |                                                                                                                                  |  |
| <b>General formula</b> – this gives the general ratio of atoms in a family of compounds: $C_nH_{2n+1}COOH$ |                                                                                                                                  |  |

All the above formulae represent the same compound: butanoic acid

### 7.1.1. Reading comprehension

- 1. How do chemists represent molecules?
- 2. What is the difference between an empirical formula and a molecular formula?
- 3. Which types of formulae show how atoms are linked by chemical bonds?
- 4. How do skeletal structures represent organic molecules?
- 5. What is general formula of aliphatic alcohols?

# 7.1.2. New terms and expressions

| formula, formulae (formulas) | wzór, wzory (chemiczny, -ne)       |  |
|------------------------------|------------------------------------|--|
| empirical formula            | wzór empiryczny                    |  |
| molecular formula            | wzór sumaryczny                    |  |
| structural formula           | wzór strukturalny                  |  |
| expanded formula             | pełny wzór strukturalny            |  |
| condensed formula            | uproszczony wzór strukturalny      |  |
| skeletal structure           | wzór szkieletowy                   |  |
| bond-line formula            | wzór szkieletowy                   |  |
| general formula              | wzór ogólny                        |  |
| actual                       | rzeczywisty                        |  |
| alcohol                      | alkohol                            |  |
| aliphatic                    | alifatyczny                        |  |
| connectivity                 | sposób łączenia się ze sobą        |  |
| dash                         | kreska                             |  |
| graphically                  | graficznie                         |  |
| molecular                    | cząsteczkowy, złożony z cząsteczek |  |
| represent                    | przedstawiać                       |  |
| skeleton                     | szkielet                           |  |
| whole number                 | liczba całkowita                   |  |
|                              |                                    |  |

## 7.2.3. Exercises

1. Match the type of formula to each representation of the alanine methyl ester molecule.



### 7.2. Classification of organic molecules

In general, organic molecules are classified according to their specific structural features. The overall shape of the carbon backbone and the presence of functional groups are two of the most important criteria.

The carbon backbone classification is shown in the table below:

| Category       | Description                                                                                                                        | Examples                                     |
|----------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Aliphatic      | Contains a straight or a branched chain of carbon atoms.                                                                           | hexane<br>OH<br>2,2-dimethylpropanol propene |
| Alicyclic      | Contains at least one<br>ring of carbon atoms;<br>the $\pi$ electrons <b>are not</b><br>delocalized over the<br>ring.              | cyclopentane cyclohexanol                    |
| Aromatic       | Contains at least one<br>ring of carbon atoms;<br>the $\pi$ electrons <b>are</b><br>delocalized over the<br>ring.                  | benzene aniline 2-nitronaphthalene           |
| Heterocyclic   | Contains a ring in which<br>at least one atom is not<br>a carbon atom.                                                             | dioxane piperidine pyrrole                   |
| Heteroaromatic | Contains a ring in which<br>at least one atom is not<br>a carbon atom; the<br>$\pi$ electrons are<br>delocalized over the<br>ring. | s tiophene pyrimidine purine                 |

A functional group is a group of a few atoms that gives a compound a particular set of properties. For example, the presence of the carboxyl group COOH in the molecule implies that the compound has weak acidic properties, that it reacts with a strong alkali to give carboxylate salts and that it produces esters on reaction with alcohols. Therefore, all compounds having a carboxyl group in the molecule are included in the family of carboxylic acids. Similarly, the presence of a hydroxyl group gives rise to the family of alcohols, etc. The most common functional groups and the corresponding families of compounds are specified below:

| Group                                                                    | Name                                                      | Family of compounds                                       | Examples                                                               |
|--------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------|
|                                                                          | double<br>bond                                            | alkenes, cycloalkenes,<br>unsaturated compounds           | butadiene cyclopentene                                                 |
| -C≡C-                                                                    | triple bond                                               | alkynes, unsaturated compounds                            | нс <del>ш</del> сн<br>ethyne                                           |
|                                                                          | benzene<br>ring                                           | arenes                                                    | toluene                                                                |
| -F<br>-Cl<br>-Br<br>-I                                                   | halogen<br>(fluorine,<br>chlorine,<br>bromine,<br>iodine) | haloalkanes (fluoro-,<br>chloro-, bromo-,<br>iodoalkanes) | H CI H Br<br>H CI CI H Br<br>iodomethane chloroform 1-bromopropane     |
| -OH                                                                      | hydroxyl<br>group                                         | alcohols, phenols                                         | OH<br>ethanol phenol                                                   |
| -OR                                                                      | alkoxyl<br>group                                          | ethers                                                    | OCH3<br>diethyl ether anisole                                          |
| -NH <sub>2</sub><br>-NHR <sup>1</sup><br>-NR <sup>1</sup> R <sup>2</sup> | amine<br>group                                            | amines                                                    | H <sub>3</sub> C—NH <sub>2</sub><br>methylamine triethylamine pyridine |
| c=o                                                                      | carbonyl<br>group                                         | aldehydes (COH),<br>ketones (COR)                         | H <sub>3</sub> C ethanal H <sub>3</sub> C CH <sub>3</sub><br>propanone |
| с он                                                                     | carboxyl<br>group                                         | carboxylic acids                                          | H <sub>3</sub> C OH ethanoic acid benzoic acid                         |
|                                     | ester<br>group              | esters          | CH <sub>3</sub><br>methyl propanoate               |
|-------------------------------------|-----------------------------|-----------------|----------------------------------------------------|
| c<br>NR <sup>1</sup> R <sup>2</sup> | amide<br>group              | amides          | $H$ $C$ $CH_3$<br>$CH_3$<br>N, N-dimethylformamide |
| -C≡N                                | nitrile<br>(cyano)<br>group | nitriles        | H <sub>3</sub> C───C──N<br>ethanenitrile           |
| -NO <sub>2</sub>                    | nitro group                 | nitro compounds | O <sub>2</sub> N 1,4-dinitrobenzene                |
| -SO₃H                               | sulpho<br>group             | sulphonic acids | о<br>benzenesulphonic acid                         |

# 7.2.1. Reading comprehension

- 1. What are the most important criteria in the classification of organic molecules?
- 2. How do we classify compounds that do not contain a ring in their molecules?
- 3. What is the difference between alicyclic and aromatic compounds?
- 4. What is the functional group of alkenes?
- 5. How do we classify compounds that have an alkoxyl group in their molecules?
- 6. Which categories of compounds contain a nitrogen atom in their molecules?

| active        | czynny                     |
|---------------|----------------------------|
| aldehyde      | aldehyd                    |
| alicyclic     | alicykliczny               |
| aliphatic     | alifatyczny                |
| alkaloid      | alkaloid                   |
| alkene        | alken                      |
| alkoxyl group | grupa alkoksylowa, eterowa |

## 7.2.2. New terms and expressions

| alkyne              | alkin                                   |
|---------------------|-----------------------------------------|
| amide               | amid                                    |
| amide group         | ugrupowanie amidowe                     |
| amine               | amina                                   |
| amine group         | grupa aminowa                           |
| arene               | aren, pochodna benzenu                  |
| aromatic            | aromatyczny                             |
| at least            | co najmniej                             |
| benzene             | benzen                                  |
| branched            | rozgałęziony                            |
| carbon backbone     | szkielet węglowy (dosł. kręgosłup)      |
| carbonyl group      | grupa karbonylowa                       |
| carboxyl group      | grupa karboksylowa                      |
| carboxylate         | karboksylan, anion kwasu karboksylowego |
| carboxylic acid     | kwas karboksylowy                       |
| chain               | łańcuch                                 |
| criterion, criteria | kryterium                               |
| cycloalkene         | cykloalken                              |
| dye                 | barwnik                                 |
| ester               | ester                                   |
| ester group         | ugrupowanie estrowe                     |
| ether               | eter                                    |
| excrete             | wydzielać                               |
| family              | rodzina, grupa                          |
| feature             | cecha, właściwość                       |
| fragrant            | pachnący                                |
| functional group    | grupa funkcyjna                         |
| gland               | gruczoł                                 |
| haloalkane          | halogenoalkan, halogenek alkilowy       |
| heteroaromatic      | heteroaromatyczny                       |
| heterocyclic        | heterocykliczny                         |
| hormone             | hormon                                  |
| hydroxyl group      | grupa hydroksylowa                      |
| ketone              | keton                                   |

| lycopene             | likopen                  |
|----------------------|--------------------------|
| menthol              | mentol                   |
| nicotine             | nikotyna                 |
| nitrile              | nitryl                   |
| nitrile group        | grupa nitrylowa          |
| nitro compound       | nitrozwiązek             |
| nitro group          | grupa nitrowa            |
| oleic acid           | kwas olejowy             |
| peppermint           | mięta (pieprzowa)        |
| phenol               | fenol                    |
| plant                | roślina                  |
| pod                  | strąk                    |
| precursor            | prekursor                |
| ring                 | pierścień                |
| sex                  | płeć, płciowy            |
| straight-line        | prosty (nierozgałęziony) |
| sulpho group         | grupa sulfonowa          |
| sulphonic acid       | kwas sulfonowy           |
| testosterone         | testosteron              |
| thyroid              | tarczyca                 |
| tobacco              | tytoń                    |
| triglyceride         | trójgliceryd             |
| tyrosine             | tyrozyna                 |
| unsaturated compound | związek nienasycony      |
| vanillin             | wanilina                 |

# 7.2.3. Exercise

1. Classify the following compounds according to the structure of their carbon backbone, the presence of functional groups and the family of chemical compounds.





# 8. Naming Organic Compounds

### 8.1. IUPAC rules for naming organic compounds

Organic compounds are named according to a set of rules devised by the International Union of Pure and Applied Chemistry (IUPAC) and accepted all over the world. In adherence to these rules, every compound is given its own, unique name derived from the structural features of the molecule. The IUPAC system views an organic molecule as a carbon skeleton with functional groups attached at specified positions. The following steps allow any organic compound to be given a systematic name, comprehensible to every chemist worldwide:

- 1. Identify the carbon skeleton of the molecule and name it after the parent hydrocarbon of identical number and arrangement of carbon atoms.
- 2. Identify functional groups and alkyl substituents attached to the skeleton, and account for their presence in the name of the compound.
- 3. Recognize the priority of functional groups.
- 4. Use the appropriate numbering scheme to give the position of every functional group and alkyl substituent, unless it is explicit.

Systematic names may be quite complex and awkward in use. No wonder that for the sake of simplicity, chemists still use common names. Just compare the systematic and common names of the following compound:



**Systematic name:** 7,8-didehydro-4,5-epoxy-17methylmorphinan-3,6-diol

Common name: morphine

## 8.1.1. Reading comprehension

- 1. What is the name of the organization that devised rules for the systematic naming of organic compounds?
- 2. How do IUPAC naming rules view an organic molecule?
- 3. How would you outline the IUPAC approach to naming organic compounds?
- 4. Why are the common names of organic compounds still in use?

# 8.1.2. New terms and expressions

| according to       | zgodnie z                              |
|--------------------|----------------------------------------|
|                    |                                        |
| account for        | wykazać, wciąć pod uwagę               |
| adherence          | przyleganie, tu: postępowanie zgodne z |
| arrangement        | układ, ułożenie                        |
| attach             | przyłączyć, przytwierdzić              |
| awkward            | niezręczny, dziwny, trudny             |
| comprehensible     | zrozumiały                             |
| devise             | opracować, wymyślić                    |
| explicit           | oczywisty, jednoznaczny                |
| for the sake of    | ze względu na                          |
| morphine           | morfina                                |
| no wonder          | nic dziwnego                           |
| numbering          | numerowanie                            |
| parent hydrocarbon | węglowodór macierzysty                 |
| priority           | pierwszeństwo                          |
| recognize          | rozpoznać                              |
| rule               | zasada, prawo, reguła                  |
| set                | zestaw, zespół                         |
| simplicity         | prostota                               |
| substituent        | podstawnik                             |
| view               | tu: postrzegać                         |

| No. of<br>C atoms | Alkanes                         |         | Cycloalkanes                    |              | Arenes                         |             |
|-------------------|---------------------------------|---------|---------------------------------|--------------|--------------------------------|-------------|
|                   | formula                         | name    | formula                         | name         | formula                        | name        |
| 1                 | CH <sub>4</sub>                 | methane |                                 |              |                                |             |
| 2                 | C <sub>2</sub> H <sub>6</sub>   | ethane  |                                 |              |                                |             |
| 3                 | C <sub>3</sub> H <sub>8</sub>   | propane | C <sub>3</sub> H <sub>6</sub>   | cyclopropane |                                |             |
| 4.                | C <sub>4</sub> H <sub>10</sub>  | butane  | C <sub>4</sub> H <sub>8</sub>   | cyclobutane  |                                |             |
| 5.                | C <sub>5</sub> H <sub>12</sub>  | pentane | C <sub>5</sub> H <sub>10</sub>  | cyclopentane |                                |             |
| 6.                | C <sub>6</sub> H <sub>14</sub>  | hexane  | C <sub>6</sub> H <sub>12</sub>  | cyclohexane  | C <sub>6</sub> H <sub>6</sub>  | benzene     |
| 7.                | C <sub>7</sub> H <sub>16</sub>  | heptane | C <sub>7</sub> H <sub>14</sub>  | cycloheptane |                                |             |
| 8                 | C <sub>8</sub> H <sub>18</sub>  | octane  | C <sub>8</sub> H <sub>16</sub>  | cyclooctane  |                                |             |
| 9.                | C <sub>9</sub> H <sub>20</sub>  | nonane  | C <sub>9</sub> H <sub>18</sub>  | cyclononane  |                                |             |
| 10.               | C <sub>10</sub> H <sub>22</sub> | decane  | C <sub>10</sub> H <sub>20</sub> | cyclodecane  | C <sub>10</sub> H <sub>8</sub> | naphthalene |

 Table 8.1.1. Systematic names of parent hydrocarbons

Table 8.1.2. Names of alkyl, cycloalkyl and aryl groups

| Group                                                             | Name                                | Group | Name        |
|-------------------------------------------------------------------|-------------------------------------|-------|-------------|
| CH <sub>3</sub> -                                                 | methyl                              |       | evelopentul |
| CH <sub>3</sub> CH <sub>2</sub> -                                 | ethyl                               |       | cyclopentyl |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> -                 | propyl                              |       |             |
| (CH <sub>3</sub> ) <sub>2</sub> CH–                               | isopropyl, <i>iso</i> -<br>propyl   |       | cyclohexyl  |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> - | butyl, <i>n-</i> butyl              |       |             |
| (CH <sub>3</sub> CH <sub>2</sub> )(CH <sub>3</sub> )CH–           | sec-butyl, s-butyl                  |       | phenyl      |
| (CH <sub>3</sub> ) <sub>3</sub> C–                                | <i>tert</i> -butyl, <i>t-</i> butyl |       |             |

Alkyl (cycloalkyl, aryl) groups are always listed in alphabetical order.

| Class of<br>compound       | Functional group | Prefix                                  | Suffix            | Example                                                          |  |
|----------------------------|------------------|-----------------------------------------|-------------------|------------------------------------------------------------------|--|
| alkene<br>(cycloalkene)    | c=_c             |                                         | -ene              | cyclopentene                                                     |  |
| alkynes                    | –C≡C–            |                                         | -yne              | propyne                                                          |  |
| arenes                     |                  | phenyl-                                 | -benzene          | ethylbenzene                                                     |  |
| fluoroalkanes <sup>*</sup> | –F               | fluoro-                                 |                   | 1,2-difluoropropane                                              |  |
| chloroalkanes <sup>*</sup> | –Cl              | chloro-                                 |                   | 1,1,1-trichloroethane                                            |  |
| bromoalkanes <sup>*</sup>  | –Br              | bromo-                                  |                   | bromocyclopentane                                                |  |
| iodoalkanes*               | <b>_</b>         | iodo-                                   |                   | iodobenzene                                                      |  |
| alcohols,<br>phenols       | –OH              | hydroxy-                                | -ol               | butan-2-ol                                                       |  |
| ethers                     | –OR              | alkoxy-<br>(methoxy-,<br>ethoxy-, etc.) |                   | methoxyethane                                                    |  |
| primary amines             | -NH <sub>2</sub> | amino-                                  | -amine            | aminoethane,<br>ethylamine                                       |  |
| secondary<br>amines        | -NHR             | N-alkylamino-                           | -amine            | N-methylamino-<br>methane,<br>dimethylamine                      |  |
| tertiary amines            | –NRR'            | N-alkyl-N-<br>-alkylamino-              | -amine            | N-ethyl-N-<br>methylaminopropane,<br>ethylmethylpropyl-<br>amine |  |
| nitro compounds            | -NO <sub>2</sub> | nitro-                                  |                   | 1,3-dinitrobenzene                                               |  |
| aldehydes                  | –CHO             |                                         | -al               | butanal                                                          |  |
| ketones                    | –C(O)R           | охо-                                    | -one              | butanone                                                         |  |
| carboxylic acids           | -COOH            |                                         | -oic acid         | propanoic acid                                                   |  |
| acyl chlorides             | -COCI            |                                         | -oyl chloride     | propanoyl chloride                                               |  |
| acid anhydrides            |                  |                                         | -oic<br>anhydride | ethanoic anhydride                                               |  |
| esters                     | -COOR            | alkyl -oate                             | 1                 | methyl propanoate                                                |  |

| primary amides                                    | -COONH <sub>2</sub> |                         | -amide                 | propanamide           |
|---------------------------------------------------|---------------------|-------------------------|------------------------|-----------------------|
| secondary and -COONHR<br>tertiary amides -COONRR' |                     | N-alkyl-(N-alkyl')amide |                        | N-ethylpropanamide    |
| nitriles                                          | –C≡N                | cyano-                  | -nitrile               | butanenitrile         |
| sulphonic acids                                   | –SO₃H               |                         | -<br>sulphonic<br>acid | toluenesulphonic acid |

\*also -cycloalkanes, -arenes, etc.

| <ol> <li>carboxylic acid</li> <li>acid anhydride</li> <li>acid anhydride</li> <li>ester</li> <li>acid chloride</li> <li>amide</li> <li>amide</li> <li>nitrile</li> <li>aldehyde</li> <li>ketone</li> <li>alcohol</li> <li>amine</li> <li>ether</li> <li>double bond</li> <li>halogen</li> </ol> |    |                 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|--|
| <ul> <li>3 ester</li> <li>4 acid chloride</li> <li>5 amide</li> <li>6 nitrile</li> <li>7 aldehyde</li> <li>8 ketone</li> <li>9 alcohol</li> <li>10 amine</li> <li>11 ether</li> <li>12 double bond</li> </ul>                                                                                   | 1  | carboxylic acid |  |
| <ul> <li>4 acid chloride</li> <li>5 amide</li> <li>6 nitrile</li> <li>7 aldehyde</li> <li>8 ketone</li> <li>9 alcohol</li> <li>10 amine</li> <li>11 ether</li> <li>12 double bond</li> </ul>                                                                                                    | 2  | acid anhydride  |  |
| <ul> <li>5 amide</li> <li>6 nitrile</li> <li>7 aldehyde</li> <li>8 ketone</li> <li>9 alcohol</li> <li>10 amine</li> <li>11 ether</li> <li>12 double bond</li> </ul>                                                                                                                             | 3  | ester           |  |
| <ul> <li>6 nitrile</li> <li>7 aldehyde</li> <li>8 ketone</li> <li>9 alcohol</li> <li>10 amine</li> <li>11 ether</li> <li>12 double bond</li> </ul>                                                                                                                                              | 4  | acid chloride   |  |
| <ul> <li>7 aldehyde</li> <li>8 ketone</li> <li>9 alcohol</li> <li>10 amine</li> <li>11 ether</li> <li>12 double bond</li> </ul>                                                                                                                                                                 | 5  | amide           |  |
| <ul> <li>8 ketone</li> <li>9 alcohol</li> <li>10 amine</li> <li>11 ether</li> <li>12 double bond</li> </ul>                                                                                                                                                                                     | 6  | nitrile         |  |
| <ul> <li>9 alcohol</li> <li>10 amine</li> <li>11 ether</li> <li>12 double bond</li> </ul>                                                                                                                                                                                                       | 7  | aldehyde        |  |
| 10amine11ether12double bond                                                                                                                                                                                                                                                                     | 8  | ketone          |  |
| <ul><li>11 ether</li><li>12 double bond</li></ul>                                                                                                                                                                                                                                               | 9  | alcohol         |  |
| 12 double bond                                                                                                                                                                                                                                                                                  | 10 | amine           |  |
|                                                                                                                                                                                                                                                                                                 | 11 | ether           |  |
| 13 halogen                                                                                                                                                                                                                                                                                      | 12 | double bond     |  |
|                                                                                                                                                                                                                                                                                                 | 13 | halogen         |  |

 Table 8.1.5.
 Prefixes indicating the number of side groups of the same kind.

| Number of groups | Prefix |
|------------------|--------|
| 2                | di-    |
| 3                | tri-   |
| 4                | tetra- |
| 5                | penta- |
| 6                | hexa-  |

#### Table 8.1.6. Rules for numbering carbon atoms

|                                  | Aliphatic compounds                                                                                                                                                                                                                                                                                                              |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1.                               | Choose the longest chain. If the compound contains multiple bonds, choose the longest chain containing such bonds.                                                                                                                                                                                                               |  |  |
| 2.                               | Identify the priority of functional groups. Number the carbon atoms in the longest chain in such a way that:<br>a. the functional group of highest priority has the lowest possible number;<br>b. the sum of the numbers indicating the positions of functional groups and other side groups is the lowest possible.             |  |  |
| Alicyclic and aromatic compounds |                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1.                               | Choose the largest ring.                                                                                                                                                                                                                                                                                                         |  |  |
| 2.                               | If there is only one functional group or side group attached to the ring, no numbering is required.                                                                                                                                                                                                                              |  |  |
| 3.                               | For two or more functional groups or side groups:<br>a. assign the number 1 to the carbon atom linked to the group of highest priority;<br>b. number the other atoms in the ring in such a way that the sum of the<br>numbers indicating the positions of the functional groups and other side groups<br>is the lowest possible. |  |  |

# 8.1.3. Exercises

1. Give the names of the following hydrocarbons



2. Draw the formulae of the following compounds:

| a. | 4-chloropentan-2-one            |  |
|----|---------------------------------|--|
| b. | cyclohexyl propanoate           |  |
| c. | 3-aminobutanoic acid            |  |
| d. | 1,1,3-trichlorocyclohexane      |  |
| e. | N-methyl-2-chloroethanamide     |  |
| f. | prop-2-en-1-ol                  |  |
| g. | benzoic ethanoic anhydride      |  |
| h. | 2-nitrobenzenesulphonic acid    |  |
| i. | N-methyl-3-ethylcyclohexylamine |  |
| j. | 2,4,6-trinitrophenol            |  |

3. Give the systematic names of the following compounds:



4. Name compound X, then all the reaction products  $\mathsf{A}-\mathsf{L}$ 



| х |  |
|---|--|
| А |  |
| В |  |
| С |  |
| D |  |
| Е |  |
| F |  |
| G |  |
| н |  |
| I |  |
| J |  |
| к |  |
| L |  |

#### 9. In the Chemical Laboratory

Working in the laboratory, chemists use a variety of tools, vessels and other equipment. The following synthetic procedures will make you familiar with some of them.

#### 9.1. Cobalt(II) (cobaltous) nitrate hexahydrate Co(NO<sub>3</sub>)<sub>2</sub> · 6H<sub>2</sub>O

(after J. Gałecki "Preparatyka nieorganiczna", WNT Warszawa, 1964)

#### Properties:

Red, monoclinic crystals. Density 1.883 g cm<sup>-3</sup>. Melting point 55.5°C (dissolves in its own water of crystallization). Further heating results in loss of water of crystallization and nitrogen oxides with gradual colour change from red through blue, green to black cobalt(II) oxide CoO. Solubility in water (per 100 g H<sub>2</sub>O, anhydrous salt): 84 g at 0°C, 161 g at 55°C and 339 g at 91°C. Fairly soluble in ethanol. Prepared by dissolving cobalt(III) oxide in warm nitric acid solution.

#### Preparation:

150 ml distilled water was measured in a measuring cylinder (graduated cylinder) and poured into a 500 ml beaker. Then 105 ml concentrated (conc.) nitric acid HNO<sub>3</sub> were added and the components mixed carefully with a glass rod.

The beaker was placed on a magnetic stirrer equipped with a hot plate, set up in a well-ventilated fume cupboard (fume hood). The solution was stirred and heated until the temperature reached  $75^{\circ}$ C. Then 60 g of finely powdered cobalt(III) oxide  $Co_2O_3$  was added in small portions using a laboratory spoon or a spatula. The mixture was stirred continuously and the temperature maintained at  $75 - 85^{\circ}$ C.

When the addition of cobalt oxide was complete, 3 ml saturated methanal (formaldehyde) solution HCHO was added dropwise using a Pasteur pipette, to ensure that all the cobalt(III) had been reduced to cobalt(II). The mixture was stirred and heated for another 30 minutes to produce an almost clear, dark pink solution.

The stir bar was then removed from the beaker and its contents passed through a fluted paper filter placed in a glass funnel. The resulting solution (filtrate) was transferred to a large evaporating dish and the excess water was evaporated until the onset of crystallization. The mixture was cooled to  $5 - 10^{\circ}$ C and the separated crystals removed by filtration on a sintered (fritted) glass filter. The crystals

were washed with 10 ml ice-cold water, transferred to a Petri dish or large watch glass and air-dried, the temperature being gradually raised from 35 to 45°C.

The yield of pure crystalline cobalt(II) nitrate hexahydrate  $Co(NO_3)_2 \cdot 6H_2O$  was 100 g (about 50%).

## 9.1.1. Reading comprehension

- 1. How does cobalt(II) nitrate hexahydrate behave on heating?
- 2. What equipment can be used for stirring mixtures?
- 3. What glassware would you use to measure out a specified volume of liquid?
- 4. How is the crystallization of the reaction product achieved?
- 5. What are the final steps for recovering the product?

| acid dissociation constant Ka | stała kwasowa <i>K</i> a    |
|-------------------------------|-----------------------------|
| beaker                        | zlewka                      |
| concave                       | wklęsły                     |
| concentrated                  | stężony                     |
| cool                          | chłodzić                    |
| crystallization               | krystalizacja               |
| distilled water               | woda destylowana            |
| dry                           | suszyć                      |
| equip                         | wyposażyć                   |
| equipment                     | wyposażenie, urządzenie     |
| evaporate                     | odparowywać                 |
| evaporating dish              | parownica, parowniczka      |
| fairly                        | przyzwoicie, nieźle         |
| filtration                    | sączenie                    |
| fine                          | drobny, silnie rozdrobniony |
| fluted paper filter           | sączek karbowany            |
| fold                          | składać, zginać             |
| fume cupboard (fume hood)     | wyciąg                      |
| funnel                        | lejek                       |
| glass rod                     | bagietka szklana            |

#### 9.1.2. New terms and expressions

| glassware                       | szkło laboratoryjne                      |
|---------------------------------|------------------------------------------|
| handle                          | posługiwać się, używać                   |
| hot plate                       | płytka grzejna                           |
| loss                            | utrata                                   |
| magnetic stirrer                | mieszadło magnetyczne                    |
| measure                         | mierzyć, odmierzyć                       |
| measuring (graduated) cylinder  | cylinder miarowy                         |
| mix                             | mieszać (ze sobą)                        |
| mixture                         | mieszanina                               |
| monoclinic                      | jednoskośny                              |
| paper filter                    | sączek z bibuły                          |
| pass                            | przepuścić                               |
| Petri dish                      | szalka Petriego                          |
| porcelain                       | porcelana                                |
| portion                         | porcja                                   |
| powder                          | proszek, sproszkować                     |
| pure                            | czysty                                   |
| raise                           | podnosić                                 |
| reach                           | sięgnąć, osiągnąć                        |
| recover                         | wyodrębniać, odzyskiwać                  |
| remove                          | oddzielić, usunąć                        |
| seal                            | zatopić, zamknąć w osłonie               |
| separate                        | wydzielić, oddzielić                     |
| set up                          | zmontować, ustawić                       |
| sintered (fritted) glass filter | filtr ze spieku szklanego, lejek Schotta |
| solubility                      | rozpuszczalność                          |
| spatula                         | łopatka                                  |
| spoon                           | łyżeczka                                 |
| stir                            | mieszać (przy pomocy mieszadła)          |
| stir bar                        | mieszadełko (magnetyczne)                |
| tool                            | narzędzie                                |
| transfer                        | przenieść                                |
| ventilate                       | wentylować                               |
| vessel                          | naczynie                                 |

| wash                     | przemywać            |
|--------------------------|----------------------|
| watch glass              | szkiełko zegarkowe   |
| water of crystallization | woda krystalizacyjna |
| yield                    | wydajność            |

# 9.1.3. Exercises

1. Fill in the blanks in the table of physical and chemical properties of benzoic acid  $C_6H_5COOH$ :

| $C_7H_6O_2$                                                                          |
|--------------------------------------------------------------------------------------|
| 122.12 g mol <sup>-1</sup>                                                           |
| C: 68.84%; H: 4.95%; O:<br>26.20%                                                    |
| white crystalline solid                                                              |
| 1.32 g cm <sup>-3°</sup>                                                             |
| 122°C                                                                                |
| 249°C                                                                                |
| in water: 3.4 g dm <sup>-3</sup> (25°C)<br>in benzene: 100 g dm <sup>-3</sup> (25°C) |
| 6.4×10 <sup>-5</sup>                                                                 |
| by oxidation of toluene with aq.<br>potassium permanganate                           |

2. Match the appropriate phrases.

| cylindrical glass vessel for<br>handling liquids                             | beaker                               |
|------------------------------------------------------------------------------|--------------------------------------|
| hand-held tool for stirring liquid<br>mixtures                               | evaporating dish                     |
| made by the multiple folding of filter paper                                 | glass rod                            |
| a small porcelain bowl for<br>removing excess water from a<br>solution       | fluted paper filter                  |
| the result of chemical synthesis<br>expressed in grams or as a<br>percentage | watch glass                          |
| a round, slightly concave piece<br>of glass                                  | yield                                |
| separation of a solid compound from a saturated solution                     | measuring<br>(graduated)<br>cylinder |
| a small magnet sealed in heat-<br>resistant plastic                          | stir bar                             |
| step by step                                                                 | crystallization                      |
| used for measuring liquids                                                   | gradually                            |

# 9.2. Butyl benzoate $C_6H_5COOC_4H_9$

(after A. I. Vogel "A textbook of practical organic chemistry", Longman, London 1956)

#### **Properties**

Colourless, oily liquid of balsamic, fruity smell. Melting point -22°C, boiling point 249°C, flash point 115°C, density 1.00 g cm<sup>-3</sup>. Insoluble in water, soluble in most organic solvents. It is prepared by direct esterification of benzoic acid with butanol in the presence of conc. sulphuric acid as catalyst.

### **Preparation**

In a 500 ml round-bottomed flask place a mixture of 30 g (0.246 mol) of benzoic acid, 37 g (46 ml, 0.5 mol) of dry butanol, 50 ml of sodium-dried toluene and 10 g (5.4 ml) of conc. sulphuric acid.

Add a few boiling stones (or small chips of porous porcelain), attach a reflux condenser and boil the mixture gently for 4 hours.

Pour the reaction product into about 250 ml water contained in a separating funnel, rinsing the flask with few ml of water. Add 50 ml diethyl ether, shake the mixture in the funnel vigorously and allow to stand. Run off the lower aqueous layer, collect the upper organic layer and repeat the extraction of the water layer with another portion of ether. Wash the combined ethereal extracts with saturated sodium bicarbonate solution and then with water.

Transfer the extracts to a conical flask containing about 5 g anhydrous magnesium sulphate. Cork the flask, shake for about 5 minutes, and allow to stand for at least half an hour with occasional shaking.

Pass the solution through a fluted paper filter directly into a small roundbottomed flask. Distil off excess solvent using a rotary evaporator and a warm water bath.

Fit the flask with a two-necked adapter, a capillary ebulliator, a short fractionating column and a Liebig condenser. At the end of the condenser attach a rotating distillation receiver that allows at least two fractions to be collected in separate flasks. Distil the residue under reduced pressure, using a water aspirator pump. Collect the forerun separately, then the main fraction boiling at  $119 - 120^{\circ}$ C/11 mm Hg (1.46 kPa).

The yield of pure butyl benzoate is 35 g (80%).

## 9.2.1. Reading comprehension

- 1. How can butyl benzoate be prepared?
- 2. What equipment is used for carrying out the esterification reaction?
- 3. How is the crude ester purified from the residual reactants butanol, benzoic acid and sulphuric acid?

- 4. How are ether and toluene removed?
- 5. What setup is used for the final purification of the product?

| adapter              | nasadka                              |
|----------------------|--------------------------------------|
| allow to stand       | pozostawić (do stania)               |
| aspirator            | pompka wodna                         |
| attach               | przymocować, przyłączyć              |
| balsamic             | balsamiczny                          |
| boil                 | gotować, utrzymywać w stanie wrzenia |
| boiling stone        | kamyczek wrzenny                     |
| carry out            | przeprowadzać                        |
| catalyst             | katalizator                          |
| chip                 | kawałeczek, odłamek, okruch          |
| collect              | zbierać                              |
| combine              | połączyć                             |
| condenser            | chłodnica                            |
| conical flask        | kolba stożkowa                       |
| cork                 | korek, zamknąć korkiem, zatkać       |
| crude                | surowy, nieoczyszczony               |
| direct               | bezpośredni                          |
| distil off           | oddestylować                         |
| dry                  | suchy                                |
| capillary ebulliator | kapilara wrzenna                     |
| esterification       | estryfikacja                         |
| extract              | ekstrakt                             |
| extraction           | ekstrakcja                           |
| filter               | sączyć, filtrować                    |
| fit                  | połączyć                             |
| flame test           | analiza płomieniowa                  |
| flash point          | temperatura zapłonu                  |
| fluted filter paper  | sączek karbowany                     |
| forerun              | przedgon                             |
| fraction             | frakcja                              |

9.2.2. New terms and expressions

| fractionating column           | kolumna destylacyjna                                                                 |
|--------------------------------|--------------------------------------------------------------------------------------|
| gently                         | łagodnie                                                                             |
| hygroscopic                    | higroskopijny                                                                        |
| impurity                       | zanieczyszczenie                                                                     |
| Liebig condenser               | chłodnica Liebiga                                                                    |
| main fraction                  | frakcja główna                                                                       |
| mixture                        | mieszanina                                                                           |
| mount                          | zestawiać, montować, mocować                                                         |
| occasional                     | od czasu do czasu                                                                    |
| porous                         | porowaty                                                                             |
| pour                           | wylewać, przelewać, nalewać                                                          |
| reactant                       | substrat                                                                             |
| reduced pressure               | zmniejszone ciśnienie                                                                |
| reflux                         | ogrzewać tak, aby pary się skraplały i powracały do roztworu (pod chłodnicą zwrotną) |
| reflux condenser               | chłodnica zwrotna                                                                    |
| residue                        | pozostałość                                                                          |
| rinse                          | opłukiwać                                                                            |
| rotary evaporator              | wyparka próżniowa, rotawapor                                                         |
| rotating distillation receiver | świnka (krówka) obrotowa                                                             |
| round-bottomed flask           | kolba okrągłodenna                                                                   |
| rubber                         | guma, gumowy                                                                         |
| run off                        | spuścić (ciecz ze zbiornika)                                                         |
| saturated                      | nasycony                                                                             |
| sensitive                      | wrażliwy                                                                             |
| separating funnel              | rozdzielacz                                                                          |
| setup                          | zestaw                                                                               |
| shake                          | wytrząsać                                                                            |
| sodium-dried                   | wysuszony nad sodem                                                                  |
| solvent                        | rozpuszczalnik                                                                       |
| text-book, textbook            | podręcznik                                                                           |
| two-necked adapter             | nasadka dwuszyjna                                                                    |
| water bath                     | łaźnia wodna                                                                         |

# 9.2.3. Exercises

1. Which of the following statements concerning the preparation of butyl benzoate are true (T) and which are false (F).

| a. | Sulphuric acid is used as a catalyst in the esterification of benzoic acid with butanol.                                         | T/F |
|----|----------------------------------------------------------------------------------------------------------------------------------|-----|
| b. | This reaction is not sensitive to the presence of water.                                                                         | T/F |
| C. | Boiling stones are used to ensure the smooth, gentle boiling of the reaction mixture.                                            | T/F |
| d. | When an aqueous solution is extracted with ether, the reaction product is contained in the lower layer in the separating funnel. | T/F |
| e. | Washing ether extracts with sodium bicarbonate solution removes residual butanol from the product.                               | T/F |
| f. | Toluene is removed from the product at a temperature far below its boiling point at normal pressure.                             | T/F |
| g. | The final purification step involves crystallization of the product.                                                             | T/F |

2. Examine **Table 9.2.1.** Give the names of at least three different pieces of apparatus used in the following operations:

| running a reaction at the temperature of the boiling solvent                   |  |
|--------------------------------------------------------------------------------|--|
| separation of the solid reaction product from the solution                     |  |
| separation of solid impurities<br>from the solution of the reaction<br>product |  |
| distillation                                                                   |  |
| purification of a gas                                                          |  |
| measuring the pH of a solution                                                 |  |
| doing a flame test                                                             |  |
| removing traces of water from a hygroscopic solid                              |  |
| extraction of the reaction product from aqueous solution                       |  |
| assembling a vacuum distillation setup                                         |  |

3. Examine **Table 9.2.1.** Match the pieces of laboratory apparatus with the materials they are made from.

| glass     | conical flask     |
|-----------|-------------------|
| yiass     | stopper           |
| porcelain | hose              |
|           | bulb              |
| metal     | glove box         |
| neta      | Büchner funnel    |
| plastic   | spoon             |
| plastic   | crucible          |
| rubber    | burette           |
|           | thermometer       |
| cork      | Bunsen burner     |
| COIN      | filter            |
| paper     | tongs             |
| μαμει     | separating funnel |

**Table 9.2.1.** The glassware and apparatus most often used in the chemical laboratory

| 1. Reaction vessels and containers | 1. Naczynia reakcyjne           |
|------------------------------------|---------------------------------|
| beaker                             | zlewka                          |
| round-bottomed flask               | kolba okrągłodenna              |
| three-necked round-bottomed flask  | kolba trójszyjna                |
| conical flask, Erlenmeyer flask    | kolba stożkowa, erlenmajerka    |
| Dewar flask                        | naczynie Dewara, termos         |
| test tube                          | probówka                        |
| crucible                           | tygiel                          |
| evaporating dish                   | parownica, parowniczka          |
|                                    |                                 |
| 2. Storage containers              | 2. Naczynia do przechowywania   |
| bottle                             | butla, butelka                  |
| jar                                | słój                            |
| watch glass                        | szkiełko zegarkowe              |
| Petri dish                         | szalka Petriego                 |
| vial                               | fiolka                          |
| ampoule                            | ampułka                         |
| dessicator                         | eksykator                       |
|                                    |                                 |
| 3. Solid handling & measurement    | 3. Praca z substancjami stałymi |
| spatula                            | łopatka                         |
| spoon                              | łyżeczka                        |
| glass rod                          | bagietka                        |
| pestle & mortar                    | tłuczek i moździeż              |
| weighing bottle                    | naczynko wagowe                 |
| weighing tray                      | tacka do ważenia                |
| weighing paper                     | papier do ważenia               |

| 4. Liquid handling & measurement    | 4. Praca z cieczami                |
|-------------------------------------|------------------------------------|
| funnel                              | lejek                              |
| Pasteur pipette                     | pipeta Pasteura                    |
| dropper                             | zakraplacz                         |
| measuring (graduated) cylinder      | cylinder miarowy                   |
| volumetric flask                    | kolba miarowa                      |
| pipette                             | pipeta                             |
| graduated pipette                   | pipeta z podziałką                 |
| burette                             | biureta                            |
| stopcock                            | kranik, kurek                      |
| dropping funnel                     | wkraplacz                          |
| syringe                             | strzykawka                         |
| rubber bulb                         | gruszka gumowa                     |
|                                     | _                                  |
| 5. Gas handling & measurement       | 5. Praca z gazami                  |
| gas cylinder                        | butla z gazem (metalowa)           |
| gas bubbler                         | bełkotka                           |
| washing bottle, scrubber            | płuczka do gazu                    |
| valve (two-way, three-way)          | zawór (dwudrożny, trójdrożny)      |
| drying tube                         | rurka ze środkiem suszącym         |
| absorber                            | absorber, kolumna absorpcyjna      |
| 6. Vapour/liquid handling           | 6. Praca z cieczą i parą           |
| boiling flask                       | kolba reakcyjna, destylacyjna      |
| boiling stone                       | kamyczek wrzenny                   |
| distillation adapter                | nasadka destylacyjna               |
| thermometer                         | termometr                          |
| condenser                           | chłodnica                          |
| reflux condenser                    | chłodnica zwrotna                  |
| Liebig condenser                    | chłodnica Liebiga                  |
| fractionating column (e.g. Vigreux) | kolumna destylacyjna (np. Vigreux) |
| receiver, receiving flask           | odbieralnik                        |
| Schlenk line                        | aparatura Schlenka                 |

| aspiratorpompka wodnaBüchner flaskkolba ssawkowatubingprzewody elastyczne (węże)hose connectionkróciec do przyłączania wężydistillation capillary, ebulliatorkapilara wrzennarotating distillation receiverświnka, krówkamanometermanometr8. Separation techniques8. Techniki rozdziałuBüchner funnellejek Buchnerapaper filtersączek bibułowy (papierowy)filter paperbibuła filtracyjnafluted paper filtersączek karbowanysintered (fritted) glass filtersfiltr ze spiekanego szkła, lejek Schottaseparating funnelrozdzielaczchromatography columnkolumna chromatograficznachromatography paperbibuła chromatograficznaSoxhlet extractoraparat Soxhleta |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| tubingprzewody elastyczne (węże)hose connectionkróciec do przyłączania wężydistillation capillary, ebulliatorkapilara wrzennarotating distillation receiverświnka, krówkamanometermanometr8. Separation techniquesBüchner funnellejek Buchnerapaper filtersączek bibułowy (papierowy)filter paperbibuła filtracyjnafluted paper filtersączek karbowanysintered (fritted) glass filtersfiltr ze spiekanego szkła, lejek Schottaseparating funnelrozdzielaczchromatography columnkolumna chromatograficznachromatography plate, TLC platepłytka chromatograficzna                                                                                           |  |  |
| hose connectionkróciec do przyłączania wężydistillation capillary, ebulliatorkapilara wrzennarotating distillation receiverświnka, krówkamanometermanometr8. Separation techniques8. Techniki rozdziałuBüchner funnellejek Buchnerapaper filtersączek bibułowy (papierowy)filter paperbibuła filtracyjnafluted paper filtersączek karbowanysintered (fritted) glass filtersfiltr ze spiekanego szkła, lejek Schottaseparating funnelrozdzielaczchromatography columnkolumna chromatograficznachromatography plate, TLC platepłytka chromatograficzna                                                                                                      |  |  |
| distillation capillary, ebulliatorkapilara wrzennarotating distillation receiverświnka, krówkamanometermanometr8. Separation techniques8. Techniki rozdziałuBüchner funnellejek Buchnerapaper filtersączek bibułowy (papierowy)filter paperbibuła filtracyjnafluted paper filtersączek karbowanysintered (fritted) glass filtersfiltr ze spiekanego szkła, lejek Schottaseparating funnelrozdzielaczchromatography columnkolumna chromatograficznachromatography plate, TLC platepłytka chromatograficzna                                                                                                                                                 |  |  |
| rotating distillation receiverświnka, krówkamanometermanometr8. Separation techniques8. Techniki rozdziałuBüchner funnellejek Buchnerapaper filtersączek bibułowy (papierowy)filter paperbibuła filtracyjnafluted paper filtersączek karbowanysintered (fritted) glass filtersfiltr ze spiekanego szkła, lejek Schottaseparating funnelrozdzielaczchromatography columnkolumna chromatograficznachromatography plate, TLC platepłytka chromatograficzna                                                                                                                                                                                                   |  |  |
| manometermanometr8. Separation techniques8. Techniki rozdziałuBüchner funnellejek Buchnerapaper filtersączek bibułowy (papierowy)filter paperbibuła filtracyjnafluted paper filtersączek karbowanysintered (fritted) glass filtersfiltr ze spiekanego szkła, lejek Schottaseparating funnelrozdzielaczchromatography columnkolumna chromatograficznachromatography plate, TLC platepłytka chromatograficzna                                                                                                                                                                                                                                               |  |  |
| 8. Separation techniques8. Techniki rozdziałuBüchner funnellejek Buchnerapaper filtersączek bibułowy (papierowy)filter paperbibuła filtracyjnafluted paper filtersączek karbowanysintered (fritted) glass filtersfiltr ze spiekanego szkła, lejek Schottaseparating funnelrozdzielaczchromatography columnkolumna chromatograficznachromatography plate, TLC platepłytka chromatograficzna                                                                                                                                                                                                                                                                |  |  |
| Büchner funnellejek Buchnerapaper filtersączek bibułowy (papierowy)filter paperbibuła filtracyjnafluted paper filtersączek karbowanysintered (fritted) glass filtersfiltr ze spiekanego szkła, lejek Schottaseparating funnelrozdzielaczchromatography columnkolumna chromatograficznachromatography paperbibuła chromatograficznachromatography plate, TLC platepłytka chromatograficzna                                                                                                                                                                                                                                                                 |  |  |
| Büchner funnellejek Buchnerapaper filtersączek bibułowy (papierowy)filter paperbibuła filtracyjnafluted paper filtersączek karbowanysintered (fritted) glass filtersfiltr ze spiekanego szkła, lejek Schottaseparating funnelrozdzielaczchromatography columnkolumna chromatograficznachromatography paperbibuła chromatograficznachromatography plate, TLC platepłytka chromatograficzna                                                                                                                                                                                                                                                                 |  |  |
| paper filtersączek bibułowy (papierowy)filter paperbibuła filtracyjnafluted paper filtersączek karbowanysintered (fritted) glass filtersfiltr ze spiekanego szkła, lejek Schottaseparating funnelrozdzielaczchromatography columnkolumna chromatograficznachromatography paperbibuła chromatograficznachromatography plate, TLC platepłytka chromatograficzna                                                                                                                                                                                                                                                                                             |  |  |
| filter paperbibuła filtracyjnafluted paper filtersączek karbowanysintered (fritted) glass filtersfiltr ze spiekanego szkła, lejek Schottaseparating funnelrozdzielaczchromatography columnkolumna chromatograficznachromatography paperbibuła chromatograficznachromatography plate, TLC platepłytka chromatograficzna                                                                                                                                                                                                                                                                                                                                    |  |  |
| fluted paper filtersączek karbowanysintered (fritted) glass filtersfiltr ze spiekanego szkła, lejek Schottaseparating funnelrozdzielaczchromatography columnkolumna chromatograficznachromatography paperbibuła chromatograficznachromatography plate, TLC platepłytka chromatograficzna                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| sintered (fritted) glass filtersfiltr ze spiekanego szkła, lejek Schottaseparating funnelrozdzielaczchromatography columnkolumna chromatograficznachromatography paperbibuła chromatograficznachromatography plate, TLC platepłytka chromatograficzna                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| separating funnelrozdzielaczchromatography columnkolumna chromatograficznachromatography paperbibuła chromatograficznachromatography plate, TLC platepłytka chromatograficzna                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| chromatography columnkolumna chromatograficznachromatography paperbibuła chromatograficznachromatography plate, TLC platepłytka chromatograficzna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| chromatography paperbibuła chromatograficznachromatography plate, TLC platepłytka chromatograficzna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| chromatography plate, TLC plate płytka chromatograficzna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Soxhlet extractor aparat Soxhleta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| indicator paper papierek wskaźnikowy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 9. Stoppers 9. Zamknięcia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| glass stopper korek szklany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| rubber bung korek gumowy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| cork stopper korek z korka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| screw cap zakrętka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |

| 10. Joints                             | 10. Złącza                         |
|----------------------------------------|------------------------------------|
| ground glass joint (conically tapered) | szlif stożkowy                     |
| ball and socket joint                  | szlif kulisty                      |
| Keck clip                              | klamra do zabezpieczania połączeń  |
| O-ring joint                           | złącze typu O-ring                 |
| O-ring seal                            | uszczelka typu O-ring              |
| expansion adapter                      | reduktor (z mniejszego na większy) |
| reduction adapter                      | reduktor (z większego na mniejszy) |
|                                        |                                    |
| 11. Metal labware                      | 11. Sprzęt metalowy                |
| laboratory stand                       | statyw                             |
| clamp                                  | łapa                               |
| support ring                           | kółko (podtrzymujące)              |
| clamp holder                           | łącznik do łap                     |
| tripod                                 | trójnóg                            |
| Bunsen burner                          | palnik Bunsena                     |
| wire gauze                             | siatka azbestowa                   |
| tongs                                  | szczypce                           |
|                                        |                                    |
| 12. Laboratory equipment               | 12. Urządzenia laboratoryjne       |
| hot plate                              | płytka grzejna                     |
| heating mantle                         | czasza grzejna                     |
| stirrer                                | mieszadło                          |
| magnetic stirrer                       | mieszadło magnetyczne              |
| stir bar (flea)                        | mieszadełko magnetyczne (kaczka)   |
| fume hood                              | wyciąg                             |
| analytical balance                     | waga analityczna                   |
| glove box                              | komora rękawicowa                  |
| glove bag                              | nadmuchiwana komora rękawicowa     |
| oven                                   | piec, suszarka                     |
| dryer, blow dryer                      | suszarka (dmuchająca powietrzem)   |
| vacuum pump                            | pompa próżniowa                    |
| centrifuge                             | wirówka                            |
| centinuge                              |                                    |

| oil bath                     | łaźnia olejowa               |
|------------------------------|------------------------------|
| thermostatic bath            | termostat                    |
| rotary evaporator, rotavapor | wyparka próżniowa, rotawapor |
| pH-meter                     | pehametr                     |
| glass electrode              | elektroda szklana            |

# **10. Chemical Analysis**

### 10.1. Analytical tests (qualitative analysis)

Chemists use analytical tests to identify inorganic and organic compounds. An analytical test is a specific chemical reaction whose result confirms or discounts the presence of a particular compound, ion or functional group.

Some metal ions can be detected by a simple flame test. When a small portion of a fairly volatile metal salt (such as a chloride) is placed in a Bunsen burner flame, the colour of the flame gives clues to the identity of the metal ion. For example, a yellow flame indicates the presence of sodium ions, brick-red – calcium ions, green – barium or copper ions.

Many ions can be identified in solution by reaction with appropriate reagents and by observing their effects.

#### Analytical tests for iron(III) ion:

The addition of sodium hydroxide or ammonia to a solution of iron(III) salt produces a red-brown, gelatinous precipitate of iron(III) hydroxide  $Fe(OH)_3$ , which is insoluble in excess of the reagent. The presence of  $Fe^{3+}$  can also be detected by the formation of intensely coloured compounds: reaction with the thiocyanate ion SCN<sup>-</sup> produces red-brown thiocyanato complex ions, while the reaction with the hexacyanoferrate(II) ion  $[Fe(SCN)_6]^{4-}$  gives a colloidal, dark-blue precipitate of Prussian blue.

Analytical tests are also used in organic chemistry. The discolouration of bromine water is a common test for detecting double bonds. Acidity/basicity tests are used for identifying carboxylic acids or amines. Brady's test indicates the presence of a carbonyl group when the formation of yellow-orange 2,4-dinitrophenylhydrazone is observed, while the following Lucas test allows one to tell aldehydes from ketones.

#### Lucas test:

The Lucas test is used to distinguish among primary, secondary and tertiary alcohols. In a typical experiment, some of the alcohol is added to a solution of zinc chloride in hydrochloric acid, after which the mixture is shaken. Tertiary alcohols readily form the corresponding alkyl chlorides. Since these compounds are insoluble in water, the mixture turns cloudy almost instantaneously, and soon two liquid layers separate. With secondary alcohols the reaction is slower, so the turbidity appears only after several minutes. Primary alcohols practically do not react with hydrochloric acid under these conditions, so the solution remains transparent.

## 10.1.1. Reading comprehension

- 1. What is the easiest way of detecting sodium ions?
- 2. How can we distinguish between calcium and barium ions using a flame test?
- 3. How do iron(III) ions react with ammonia?
- 4. What tests are used for the detection of carboxylic acids and aldehydes?
- 5. What is the difference between the reaction of primary and tertiary alcohols using the Lucas test?
- 6. How would you account for this difference?
- 7. Why does a turbid solution indicate a positive result of the Lucas test?

### 10.1.2. New terms and expressions

| analytical test         | test analityczny, próba         |
|-------------------------|---------------------------------|
| brick                   | cegła                           |
| bromine water           | woda bromowa                    |
| cloudy                  | mętny                           |
| clue                    | wskazówka, sugestia, informacja |
| colloidal               | koloidalny                      |
| confirm                 | potwierdzać                     |
| deposit                 | osadzić (się)                   |
| discolouration          | odbarwienie                     |
| discount                | odrzucić                        |
| distinguish             | odróżnić                        |
| fair                    | przyzwoity, umiarkowany         |
| flame test              | analiza płomieniowa             |
| gelatinous              | galaretowaty                    |
| identification          | wykrywanie                      |
| identity                | tożsamość                       |
| instantaneous           | natychmiastowy                  |
| intense                 | intensywny                      |
| primary, 1 <sup>o</sup> | pierwszorzędowy                 |

| Prussian blue | błękit pruski             |
|---------------|---------------------------|
| pungent       | ostry, gryzący, drażniący |
| qualitative   | jakościowy                |
| secondary, 2° | drugorzędowy              |
| tell from     | odróżnić                  |
| tertiary, 3°  | trzeciorzędowy            |
| transparent   | przeźroczysty             |
| turbidity     | zmętnienie                |
| volatile      | lotny                     |

#### 10.1.3. Exercises

- 1. Give examples of analytical tests for:
- a. the copper(II) ion

## b. the chloride ion

## c. reducing monosaccharides (e.g. glucose)

### d. carboxylic acids

- 2. Fill in the blanks in the following paragraphs.

### **10.2. Titration (an example of quantitative analysis)**

Titration is an analytical technique still in common use in chemical laboratories today. It is a kind of volumetric analysis, involving the measurement of the volume of reactant A solution required to react quantitatively with an unknown amount of reactant B, which is determined in the experiment.

The typical titration setup consists of a burette mounted on a laboratory stand and a conical flask. The solution of analyte of unknown concentration is placed in the flask, then a few drops of indicator solution are added. The burette is filled with a standardized titrant solution of precisely known molarity. The level of the solution is carefully adjusted to read zero.

The titrant is then added stepwise to the analyte solution. After each portion, the contents of the flask are swirled to ensure the even distribution of titrant throughout the solution. The titrant continues to be added – dropwise, when the endpoint is thought to be approaching – until the next drop of titrant permanently changes the colour of the indicator.

Acid-base titration involves a neutralization reaction between acids and bases. The stepwise addition of base to acid results in a gradual change in the pH of the solution, represented graphically by the pH curve. At the beginning of the titration, the pH of the solution changes quite slowly, but near the endpoint (equivalence point) we observe a dramatic, almost vertical rise of the curve. The most common indicators used in acid-base titrations are phenolphthalein and methyl orange. The course of titration can also be monitored with a pH-meter, whose glass electrode is sensitive to the concentration of hydrogen ions.

Other types of reactions are used in titration as well: reduction-oxidation reaction (redox titration), complex ion formation (complexometric titration) or the precipitation of an insoluble product (precipitometry).
| Туре                       | Analyte                                                      | Titrant                               | Indicator                                            |
|----------------------------|--------------------------------------------------------------|---------------------------------------|------------------------------------------------------|
| Acidimetric<br>(acid-base) | acids, bases                                                 | sodium hydroxide<br>hydrochloric acid | phenolphthalein<br>methyl orange<br>bromothymol blue |
| Redox                      | Redox                                                        |                                       |                                                      |
| manganometric              | reductants, e.g.<br>iron(II), hydrogen<br>peroxide, oxalates | potassium<br>permanganate             | none                                                 |
| iodometric                 | oxidants, e.g.<br>iron(III), copper(II),                     | sodium<br>thiosulphate                | starch                                               |
| Complexometric             | metal ions                                                   | EDTA                                  | eriochrome black T<br>murexide                       |
| Precipitometric            |                                                              |                                       |                                                      |
| argentometric              | halide ions                                                  | silver nitrate                        | potassium dichromate                                 |

# 10.2.1. Reading comprehension

- 1. What is titration?
- 2. What is the difference between volumetric and gravimetric analysis?
- 3. How would you assemble a simple titration setup?
- 4. What are the methods for determining the endpoint?
- 5. What types of reaction are used in titration?
- 6. What is the shape of a typical titration curve?
- 7. Do all titration types require the use of an indicator?

## 10.2.2. New terms and expressions

| acid-base titration | miareczkowanie kwasowo-zasadowe |
|---------------------|---------------------------------|
| acidimetric         | acydymetryczny                  |
| adjust              | skorygować, dopasować           |
| analyte             | substancja oznaczana, analit    |
| argentometric       | argentometryczny                |
| bromothymol blue    | błękit bromotymolowy            |
| complexometric      | kompleksometryczny              |

| concentration              | stężenie                         |
|----------------------------|----------------------------------|
| course                     | przebieg                         |
| determine                  | oznaczać                         |
| dramatic                   | gwałtowny                        |
| drop                       | kropla                           |
| dropwise                   | (kropla) po kropli               |
| EDTA                       | EDTA, wersenian                  |
| endpoint                   | punkt końcowy                    |
| equivalence point          | punkt równoważnikowy             |
| eriochrome black T         | czerń eriochromowa T             |
| even                       | równomierny                      |
| fill                       | napełniać                        |
| gravimetric analysis       | analiza wagowa                   |
| hydrogen peroxide          | nadtlenek wodoru                 |
| indicator                  | wskaźnik                         |
| iodometric                 | jodometryczny                    |
| manganometric              | manganometryczny                 |
| methyl orange              | oranż metylowy                   |
| molarity                   | stężenie molowe                  |
| monitor                    | śledzić, monitorować, obserwować |
| murexide                   | mureksyd                         |
| oxalate                    | szczawian                        |
| oxidant (oxidizing agent)  | utleniacz                        |
| oxidation                  | utlenianie                       |
| permanent                  | trwały                           |
| pH curve                   | krzywa pH                        |
| phenolphthalein            | fenoloftaleina                   |
| precipitometric            | precypitometryczny               |
| precise                    | precyzyjny, dokładny             |
| quantitative               | ilościowy                        |
| reductant (reducing agent) | reduktor                         |
| reduction                  | redukcja                         |
| sodium thiosulphate        | tiosiarczan sodu                 |
| stepwise                   | krok po kroku, stopniowy         |

| swirl               | zamieszać (ruchem okrężnym) |
|---------------------|-----------------------------|
| technique           | technika                    |
| titration           | miareczkowanie              |
| volume              | objętość                    |
| volumetric analysis | analiza objętościowa        |

# 10.2.3. Exercises

# 1. Give the words or phrases that correspond with the following descriptions.

| A graduated glass tube equipped with a stopcock.                                                                      |  |
|-----------------------------------------------------------------------------------------------------------------------|--|
| You do this after the addition of each portion of titrant.                                                            |  |
| A compound that changes colour when the pH turns from acidic to alkaline.                                             |  |
| An organic compound that is colourless<br>in acidic solution but pink in alkaline<br>solution.                        |  |
| A substance of unknown concentration that is being determined by titration                                            |  |
| A type of titration involving the precipitation of an insoluble reaction product.                                     |  |
| A class of compounds that can be determined by iodometric titration.                                                  |  |
| The point at which the whole quantity of<br>the compound to be determined has<br>reacted completely with the titrant. |  |
| A solution of precisely known molarity.                                                                               |  |
| A type of analysis that determines the identity of an unknown compound.                                               |  |
| A type of analysis that determines the amount of an unknown compound.                                                 |  |

2. Fill in the blanks in the following paragraph.

# 11. Chromatography

# 11.1. Principles of chromatography

Chromatography was discovered by the Russian botanist Mikhail Tsvet (Михаил Цвет) in 1900, when he tried to separate plant pigments by passing a leaf extract through a glass tube packed with finely powdered calcium carbonate. He found out that natural chlorophyll is actually a mixture of several different compounds. Today, chromatography is one of the most widespread laboratory techniques used for the analytical or preparative separation of mixtures.

In principle, chromatography involves passing a mixture of components, contained in a mobile phase (gaseous or liquid), through a stationary phase (liquid or solid), fixed to some kind of support, such as a glass plate or column. Different molecules carried by the mobile phase are attracted to the stationary phase to a different degree. Those interfering only weakly migrate quickly through the stationary phase and come out first. Those that are attracted more strongly migrate at a slower rate, so they are retained longer. As a result, the components are separated.

# 11.1.1. Reading comprehension

- 1. How was chromatography discovered?
- 2. What is chromatography about?
- 3. How does the chromatographic separation of components occur?

| botanist       | botanik                     |
|----------------|-----------------------------|
| carry          | nieść                       |
| chlorophyll    | chlorofil                   |
| chromatography | chromatografia              |
| discover       | odkryć                      |
| find out       | odkryć, dowiedzieć się      |
| interfere      | oddziaływać                 |
| leaf (leaves)  | liść (liście)               |
| migrate        | przemieszczać się, wędrować |

## 11.1.2. New terms and expressions

| mobile phase     | faza ruchoma                 |
|------------------|------------------------------|
| pack             | wypełniać                    |
| pass             | przepuszczać, przechodzić    |
| preparative      | preparatywny                 |
| retain           | zatrzymywać                  |
| separate         | rozdzielać                   |
| stationary phase | faza nieruchoma, stacjonarna |
| support          | podłoże                      |
| widespread       | szeroko rozpowszechniony     |

## 11.1.3. Exercise

The process of chromatographic separation may be compared to the situation when a swarm of bees and wasps flies over a bed of flowers. Bees, which are honey gatherers, are more attracted to flowers than wasps, which are generally carnivorous. Every now and then, bees will alight on a flower, sip some nectar, and take off again. Wasps take much less interest in flowers, so they will fly straight ahead. Thus, the wasps reach the end of the flower bed first, while the bees arrive at the same place much later. As a result, the wasps are separated from the bees.

Use 'chromatographic' terminology to describe this process of separation:

| wasps and bees                   |  |
|----------------------------------|--|
| wasps                            |  |
| bees                             |  |
| air                              |  |
| flower bed                       |  |
| smell of flowers                 |  |
| effective speed of flying insect |  |

Vocabulary for the exercise:

| ahead       | naprzód                                   |
|-------------|-------------------------------------------|
| alight      | siadać, lądować                           |
| bee         | pszczoła                                  |
| carnivorous | mięsożerny                                |
| flight      | lot                                       |
| flower bed  | klomb kwiatów, rabata                     |
| gatherer    | zbieracz                                  |
| honey       | miód                                      |
| insect      | owad                                      |
| nectar      | nektar                                    |
| sip         | łyknąć, pociągnąć, siorbnąć               |
| swarm       | rój                                       |
| take off    | startować, oderwać się od ziemi, pofrunąć |
| wasp        | osa                                       |

# **11.2.** Chromatography in the laboratory

Paper chromatography uses a strip of paper as the stationary phase. The mobile phase is an organic solvent (or a mixture of solvents) immiscible in water. A drop of sample solution is placed near the end of the strip, which is then dipped in the solvent. As the solvent passes through paper, the constituents of the sample dissolve in the water adsorbed on the cellulose fibres, after which they are extracted back into the solvent. The rate of migration of a particular compound depends on the partition coefficient, that is, on the ratio of its concentrations in water and the organic solvent. Less polar compounds, better soluble in the organic phase, tend to travel with the solvent front. More polar ones have longer retention times (lower values of the retention factor  $R_f$ ).

The resulting chromatogram usually needs to be developed to visualize the spots corresponding to different compounds. For example, ninhydrin is commonly used for developing chromatograms of amino acids and peptides.

In thin layer chromatography (TLC), the stationary phase is a layer of finely powdered adsorbent, such as silica or alumina gel, spread over a flat surface – a glass plate, aluminium foil or plastic sheet. Again, the polarity of the compound determines its rate of migration through the stationary phase. Highly polar compounds are strongly adsorbed to the surface of silica gel, which is covered with polar hydroxyl groups, whereas non-polar compounds interact only weakly with this adsorbent.

For preparative purposes, column chromatography is used. The adsorbent is packed in long glass columns and the mixture of compounds is placed at the top of the column. As solvent passes through the adsorbent, the components are separated and eluted one by one in separate fractions.

# 11.2.1. Reading comprehension

- 1. What are the stationary and mobile phases in paper chromatography?
- 2. Which parameter determines the migration rate of a particular compound through paper?
- 3. What does the symbol  $R_f$  stand for?
- 4. How can one visualize the spots of different compounds on a chromatogram?
- 5. What adsorbents are used in TLC?
- 6. Which compound would you expect to have higher a R<sub>f</sub> value in TLC on silica: ethanol or chloroethane?
- 7. What equipment is used for preparative chromatography?

# 11.2.2. New terms and expressions

| adsorb                | zaadsorbować             |
|-----------------------|--------------------------|
| adsorbent             | adsorbent                |
| alumina               | tlenek glinu             |
| amino acid            | aminokwas                |
| chromatogram          | chromatogram             |
| column chromatography | chromatografia kolumnowa |
| develop               | rozwijać, wywołać        |
| dip                   | zanurzyć, zamoczyć       |
| elute                 | wymywać                  |

| fibre (US fiber)          | włókno                          |
|---------------------------|---------------------------------|
| immiscible                | nie mieszający się              |
| ninhydrin                 | ninhydryna                      |
| pack                      | napełnić (czymś sypkim, stałym) |
| paper chromatography      | chromatografia bibułowa         |
| partition coefficient     | współczynnik podziału           |
| peptide                   | peptyd                          |
| plate                     | płytka                          |
| preparative               | preparatywny                    |
| retention factor          | współczynnik R <sub>f</sub>     |
| retention time            | czas retencji                   |
| sheet                     | arkusz                          |
| silica                    | krzemionka                      |
| silica gel                | żel krzemionkowy                |
| solvent front             | czoło rozpuszczalnika           |
| spot                      | plamka, miejsce                 |
| spread                    | rozsmarować, pokryć coś         |
| surface                   | powierzchnia                    |
| thin layer chromatography | chromatografia cienkowarstwowa  |
| visualize                 | uwidocznić                      |

# 11.2.3. Exercises

1. Label all the parts in the diagram of paper chromatography.





117 | Strona

## 2. Fill in the blanks.

To assess the progress of the reaction in which benzoic acid was reduced to benzyl alcohol, a tiny ...... of reaction mixture was placed near one end of a glass ..... covered with ...... gel. The plate was then ..... in a methanol-chloroform mixture. When the ...... had almost reached the top, the plate was removed, ..... had almost reached the top, the plate was removed, ..... at the bottom. The ...... were visualized as dark-brown spots. Since the lower spot was much more intense than the upper one, the reduction was ......

## 11.3. Instrumental laboratory techniques

Chromatography is used in instrumental methods as well. The two most important ones are gas chromatography (GC) and high performance liquid chromatography (HPLC).

In GC, the mobile phase is an inert gas, such as nitrogen, argon or helium. Solid porous adsorbents or high-boiling liquids placed on a porous material are used as stationary phases. In capillary GC, the liquid stationary phase covers the inner walls of a very long, narrow, spirally twisted column. Usually, gas chromatographs operate at high temperature to ensure the appropriate volatility of the analytes. The result of the analysis takes the form of a chromatogram, recorded by a detector and processed using a data integration system. A typical chromatogram consists of a number of peaks, each corresponding to a different component in the sample analysed.



HPLC uses liquid solvents as mobile phase. The solvent, or mixture of solvents, is forced at very high pressure through columns filled with the stationary phase. There are two general types of HPLC analysis: normal-phase separation and reversed-phase separation. The former uses a polar column packing, such as silica gel and non-polar solvents (hexane, dichloromethane, etc.). Reversed-phase separation is far more common. It uses a non-polar column packing and polar solvents (e.g. methanol/water or acetonitrile/water buffer solution). Reversed-phase adsorbents are manufactured by the chemical modification of silica: alkyl fragments are attached to the hydroxyl groups at the surface. In this case, the more polar compounds migrate through the column faster than the less polar ones do.



119 | Strona

# 11.3.1. Reading comprehension

- 1. What is the mobile phase in gas chromatography?
- 2. How is a stationary phase prepared in GC?
- 3. Why are GC experiments usually carried out at elevated temperature?
- 4. What does a typical GC chromatogram look like?
- 5. What is the mobile phase in HPLC?
- 6. How would you explain the idea of reversed-phase chromatography?

## 11.3.2. New terms and expressions

| 256265                                 | ocenić, oszacować                                                                          |
|----------------------------------------|--------------------------------------------------------------------------------------------|
| assess                                 |                                                                                            |
| beverage                               | napój                                                                                      |
| capillary                              | kapilara                                                                                   |
| carrier                                | nośnik                                                                                     |
| congener                               | kongener, związek zawierający tę samą<br>grupę funkcyjną lecz różną liczbę<br>atomów węgla |
| data integration system                | integrator                                                                                 |
| force                                  | wtłaczać, wpychać                                                                          |
| gas chromatography                     | chromatografia gazowa                                                                      |
| high performance liquid chromatography | wysokorozdzielcza chromatografia cieczowa                                                  |
| homologous series                      | szereg homologiczny                                                                        |
| inert                                  | obojętny                                                                                   |
| instrumental method                    | metoda instrumentalna                                                                      |
| isothermal                             | izotermiczny                                                                               |
| metabolite                             | metabolit                                                                                  |
| narrow                                 | wąski                                                                                      |
| packing                                | wypełnienie                                                                                |
| peak                                   | pik                                                                                        |
| pressure                               | ciśnienie                                                                                  |
| reversed-phase                         | faza odwrócona                                                                             |
| spiral                                 | spiralny, spirala                                                                          |
| twist                                  | skręcać                                                                                    |

### 11.3.3. Exercise

The GC chromatogram of a sample of blood taken from a drunken driver is shown below. Apart from ethanol, a number of other volatile compounds are detected. They are congeners of ethanol (alcohols having more or fewer carbon atoms in the molecule) as well as metabolites (which in the case of alcohols are oxidation products). Try to identify all the peaks.



| Peak | Compound description                                      | Compound name |
|------|-----------------------------------------------------------|---------------|
| 1    | alcohol congener                                          |               |
| 2    | oxidation product, reacts with Tollens<br>reagent         |               |
| 3    | main component of alcoholic beverages                     |               |
| 4    | oxidation product, does not react with<br>Tollens reagent |               |
| 5    | alcohol congener                                          |               |
| 6    | alcohol congener, the same number of C atoms as in 5      |               |

#### Notes:

- a. In a homologous series, the more carbon atoms in the molecule, the higher the boiling point.
- b. Branched isomers have always lower boiling points than linear ones.
- c. Hydrogen bonding is at least 10 times stronger than electrostatic dipole-dipole interaction.

# 12. Spectroscopy. Part I.

# 12.1. Principles of spectroscopy

The energy of matter is quantized at the microscopic level. This means that a particle (electron, atom, molecule, etc.) can take only certain, specific values of energy, referred to as energy states or energy levels. If the particle is in one energy state, say  $E_1$ , and it absorbs some energy, it is excited to the higher energy state  $E_2$ . This transition occurs only when the portion of absorbed energy matches exactly the difference between the two energy states. This observation provides the general foundation for a group of instrumental techniques known as spectroscopic methods.

In spectroscopy, a sample is subjected to electromagnetic radiation of a specific energy range. Then, the radiation that has passed through the sample is analysed for any wavelengths absorbed during this process. The result usually takes the form of a graph showing how the magnitude of absorption varies with the wavelength (or frequency, or wavenumber); this is referred to as a spectrum.



## 12.1.1. Reading comprehension

- 1. What does it mean that the energy of particles is quantized?
- 2. Why do particles absorb only specific values of energy?
- 3. Explain the general concept of spectroscopy.

# 12.1.2. New terms and expressions

| absorb          | pochłaniać, absorbować          |
|-----------------|---------------------------------|
| absorption      | absorpcja                       |
| attenuation     | osłabienie                      |
| consecutive     | kolejny                         |
| cycle           | okres (drgania), cykl           |
| electromagnetic | elektromagnetyczny              |
| energy level    | poziom energetyczny             |
| energy state    | stan energetyczny               |
| foundation      | podstawa, fundament             |
| frequency       | częstotliwość                   |
| level           | poziom                          |
| magnitude       | wielkość                        |
| match           | pasować                         |
| particle        | cząstka                         |
| provide         | dostarczać, zapewniać, stanowić |
| spectroscopy    | spektroskopia                   |
| spectrum        | widmo                           |
| subject         | poddawać, wystawiać na          |
| transition      | przejście                       |
| vibration       | drganie                         |
| wavelength      | długość fali                    |
| wavenumber      | liczba falowa                   |

# <u>12.1.3. Exercise</u>

# 1. Give the expressions matching the definitions in the left-hand column.

| The constant relating the energy of electromagnetic radiation to its frequency. |  |
|---------------------------------------------------------------------------------|--|
| The distance between two consecutive maxima of a wave.                          |  |

| The graph showing how the absorption of electromagnetic radiation depends on its wavelength. |  |
|----------------------------------------------------------------------------------------------|--|
| The number of full vibration cycles in unit length.                                          |  |
| The number of full vibration cycles in unit time.                                            |  |
| The product of wavelength and frequency.                                                     |  |
| The attenuation of radiation intensity as it passes through a sample of matter.              |  |

# 12.2. UV-VIS spectroscopy

The transition of an electron from the ground to an excited energy level gives rise to the absorption of ultraviolet radiation and sometimes also visible light. Typical UV-VIS spectrometers operate in the 200 – 700 nm range of wavelengths. Absorption spectra usually consist of a few very broad absorption bands, so UV-VIS spectroscopy is rarely used for the determination of molecular structure. On the other hand, absorption is quantitatively related to the concentration of the absorbing species, in accordance with the Beer-Lambert law. For this reason UV-VIS spectrometry is extensively used in colorimetric analysis or in monitoring the course of chemical change.

| Beer-Lambert law:<br>$A = -\log \frac{l}{l_0} = \varepsilon \times l \times c$ |                                                         |  |
|--------------------------------------------------------------------------------|---------------------------------------------------------|--|
| where                                                                          |                                                         |  |
| <i>A:</i>                                                                      | absorbance                                              |  |
| <i>I</i> :                                                                     | intensity of light that has passed through a sample     |  |
| <i>I</i> <sub>0</sub> :                                                        | intensity of light before it enters a sample            |  |
| E.                                                                             | proportionality constant (molar absorption coefficient) |  |
|                                                                                | $mol^{-1} dm^{-3} cm^{-1}$                              |  |

- *I*: distance light travels in the solution (path length) cm
- *c*: concentration of the solution (molarity) mol dm<sup>-3</sup>

## Origin of colour:

Coloured substances absorb visible light in the 400 - 700 nm range, which requires the electron energy levels to be quite close to one another. This is the case with *d*-electrons, so transition metal compounds are usually coloured owing to the presence of partially occupied *d*-orbitals. Coloured organic compounds usually contain conjugated  $\pi$  systems, in which electrons are delocalized over a large portion of the molecule, as in carotene or azo dyes.

## 12.2.1. Reading comprehension

- 1. In what wavelength range can electron transitions be studied?
- 2. What does a typical UV-VIS spectrum look like?
- 3. Where is UV-VIS spectroscopy most useful?
- 4. Define the molar absorption coefficient  $\varepsilon$ .
- 5. Why are transition metal compounds usually coloured?
- 6. Which organic compounds absorb visible light?

## 12.2.2. New terms and expressions

| absorbance                   | absorbancja                    |
|------------------------------|--------------------------------|
| absorption band              | pasmo absorpcyjne              |
| absorption spectrum          | widmo absorpcyjne              |
| colorimetry, colorimetric    | kolorymetria, kolorymetryczny  |
| cuvette                      | kiuweta                        |
| excited energy level         | wzbudzony poziom energetyczny  |
| extensive                    | powszechny, częsty, rozległy   |
| ground energy level          | podstawowy poziom energetyczny |
| molar absorption coefficient | molowy współczynnik ekstynkcji |
| operate                      | działać                        |
| path length                  | długość drogi                  |
| proportionality constant     | współczynnik proporcjonalności |
| rare                         | rzadki, nieczęsty              |
| spectrometer                 | spektrometr                    |
| ultraviolet                  | nadfioletowy                   |
| visible light                | światło widzialne              |

#### 12.2.3. Exercise

1. Fill in the blanks.

The UV-VIS spectrum of pink  $[Co(H_2O)_6]^{2+}$  ions contains a weak and broad absorption ...... in the ..... region at 515 nm. It is too weak for ..... measurements, so before determination of the Co(II) concentration, some ...... ions SCN<sup>-</sup> are added to the solution. The spectrum of the resulting blue  $[Co(SCN)_4]^{2-}$  complex reveals a much more ..... absorption at 625 nm. The ..... recorded for a  $1.5 \times 10^{-4}$  M solution of the cobalt complex shows an absorbance of 0.27 with a cuvette of 1 cm ..... length. This means that according to the -----law, the molar ..... ..... of  $[Co(SCN)_4]^{2-}$  is 1800. The colour of this complex can be by accounted for the presence of ..... ..... in the cobalt(II) ion.

## 12.3. Infrared (IR) spectrometry.

IR spectrometry typically uses infrared radiation from the  $4000 - 400 \text{ cm}^{-1}$  (2.5 – 25  $\mu$ m) range. The absorption of IR is associated with the stretching and bending vibrations of covalent bonds. The position of an absorption band depends on the mass of atoms linked by the bond as well as on the bond strength, so IR spectrometry is particularly suitable for detecting the presence (or absence) of particular functional groups.

Typical absorption ranges are listed in correlation charts, which are very useful when determining the molecular structure of organic compounds. For example, a strong absorption band near  $1700 \text{ cm}^{-1}$  indicates the presence of a carbonyl group C=O, while the substitution configuration of the benzene ring can be deduced from the pattern of peaks in the 900 – 650 cm<sup>-1</sup> range.

The long-wave portion of an IR spectrum is called the fingerprint region, since it is unique to a particular compound. Fingerprint regions are used for identifying compounds by comparing recorded spectra with those collected in data bases.

# 12.3.1. Reading comprehension

- 1. What is an IR absorption band associated with?
- 2. Where are typical ranges of absorption listed?
- 3. What functional group could be present if there is a strong absorption band near 1700 cm<sup>-1</sup> in the IR spectrum?
- 4. What is a 'fingerprint region'?

| bending vibrations    | drgania zginające                                   |
|-----------------------|-----------------------------------------------------|
| bond strength         | siła wiązania                                       |
| configuration         | układ, konfiguracja                                 |
| correlation chart     | tablica wiążąca cechę widma ze strukturą cząsteczki |
| data base             | baza danych                                         |
| fingerprint           | odcisk palca                                        |
| infrared              | podczerwień, podczerwony                            |
| long-wave             | długofalowy                                         |
| mode                  | sposób                                              |
| pattern               | wzór, układ                                         |
| stretching vibrations | drgania rozciągające                                |
| suitable              | odpowiedni, właściwy                                |

## 12.3.2. New terms and expressions

# 12.3.3. Exercise

1. Indicate which statements are true (T) and which are false (F).

| a. | IR is electromagnetic radiation of shorter wavelength than UV.                                                                         | T/F |
|----|----------------------------------------------------------------------------------------------------------------------------------------|-----|
| b. | In the stretching vibration mode, the bond length changes periodically but the bond angle remains the same.                            | T/F |
| C. | In an IR spectrum, the C≡C group gives rise to an absorption band at a longer wavelength than the C=C one does.                        | T/F |
| d. | In the IR spectrum, the C=O group gives rise to an absorption band at a higher wavenumber than the C=S one does.                       | T/F |
| e. | All compounds showing a prominent absorption peak near 1700 cm <sup>-1</sup> should give a positive result in Brady's test.            | T/F |
| f. | The typical wavenumber range of the fingerprint region is 4000 – 2000 cm <sup>-1</sup> .                                               | T/F |
| g. | Comparison of a recorded IR spectrum with one found in a spectroscopic data base enables a molecular structure to be fully determined. | T/F |

## 13. Spectroscopy. Part II.

#### 13.1. Nuclear magnetic resonance (NMR) spectroscopy.

Many atomic nuclei posses a nuclear spin, which makes them behave like tiny magnets. When a strong magnetic field is applied, they tend to align either with the direction of the field or against it. These two orientations have slightly different energies, so the transition between them involves the absorption of electromagnetic radiation. Even in the strongest magnetic fields attained by modern superconducting magnets, the splitting of energy levels is quite small and the absorbed radiation falls in the range of long-wave radiowaves (50 – 200 cm).

The absorption of radiowaves by a sample placed in a strong magnetic field is called nuclear magnetic resonance (NMR). This phenomenon is used in NMR spectroscopy. Modern spectrometers detect changes in absorption caused by very subtle variations of the magnetic field. The result, plotted as an NMR spectrum, reveals many details about the structure of the molecules studied.

Today, NMR spectroscopy is an invaluable tool for the determination of molecular structures. <sup>1</sup>H and <sup>13</sup>C nuclei are most commonly used in NMR experiments, although studying the resonance of other nuclei is possible as well. A typical proton NMR spectrum contains a number of signals, each corresponding to a group of equivalent hydrogen atoms. Very often, the signals are split into multiplets (e.g. doublets, triplets, quartets) as a result of coupling between the nuclei of non-equivalent atoms. Additional information is provided by the integration of NMR signals that gives clues as to the number of particular hydrogen atoms present in the molecule. By examining the chemical shifts of the signals, their splitting pattern and intensity, one can deduce the overall structure of the compound.

Modern techniques, such as decoupling experiments and two-dimensional correlation spectroscopy, make it possible to study the structures of even highly complex biomolecules such as proteins, saccharides or nucleotides.

Proton magnetic resonance is also employed in diagnostic medicine. When the human body is placed in a strong magnetic field, resonating hydrogen nuclei form a three-dimensional image of the internal organs. This tomographic technique is referred to as magnetic resonance imaging (MRI).

129 | Strona

# 13.1.1. Reading comprehension

- 1. What is the origin of the energy level splitting in magnetic resonance?
- 2. What range of electromagnetic radiation is used in NMR spectroscopy?
- 3. Which nuclei are most commonly used in NMR spectroscopy?
- 4. Why are NMR absorption signals often split into multiplets?
- 5. What can you deduce from the integration of NMR signals?
- 6. What is the general idea of magnetic resonance imaging?

| nemiczne              |
|-----------------------|
|                       |
|                       |
| oodwójny rezonans)    |
|                       |
|                       |
| kwartet,              |
|                       |
| , używać              |
| az                    |
|                       |
|                       |
|                       |
|                       |
| zne                   |
| ezonans jądrowy       |
| zonansu magnetycznego |
|                       |
|                       |
|                       |
| rzestrzeni)           |
| rzest                 |

# 13.1.2. New terms and expressions

| phenomenon             | zjawisko              |
|------------------------|-----------------------|
| plot                   | wykreślać, rysować    |
| protein                | białko                |
| radiowave              | fala radiowa          |
| saccharide             | węglowodan            |
| signal                 | sygnał, pik, pasmo    |
| split                  | rozszczepiać          |
| subtle                 | subtelny              |
| superconducting magnet | magnes nadprzewodzący |
| tiny                   | malutki, niewielki    |
| tomography             | tomografia            |
| two-dimensional        | dwuwymiarowy          |

## 13.1.3. Exercise

1. Examine the proton NMR spectrum of pentan-2-one. Assign all the resonances to the relevant groups of hydrogen atoms.



 

## 13.2. Mass spectrometry (MS)

Moving electrically charged particles are deflected from their path by a magnetic field. This phenomenon is exploited by mass spectrometry, a technique widely used in the determination of molecular structure.

Molecules are first ionized, for example by bombardment with high energy electrons. The resulting positive ions are accelerated in the mass spectrometer and deflected by a magnetic field. The angle of deflection depends on the charge and mass of the particle. Since most of the ions produced in the ionization chamber posses a +1 charge, the magnetic field separates them according to their mass. As a result, a mass spectrum is produced. The spectrum consists of many narrow peaks, each of them representing an ion of different mass. The height of the peak represents the ion's abundance.

Examination of the molecular ion peaks in the spectrum gives direct information about the molecular mass of the compound. Moreover, fragmentation ions and isotope ions provide additional clues about the actual structure of the molecule.

## 13.2.1. Reading comprehension

- 1. How does a magnetic field interact with moving charged particles?
- 2. How are neutral molecules ionized in a mass spectrometer?
- 3. What does a mass spectrum look like?
- 4. What information is provided by mass spectra?

# 13.2.2. New terms and expressions

| abundance            | rozpowszechnienie (udział procentowy) |
|----------------------|---------------------------------------|
| accelerate           | przyspieszać                          |
| bombardment          | bombardowanie                         |
| deflect              | odchylać                              |
| fragmentation ion    | jon fragmentacyjny                    |
| ionization chamber   | komora jonizacyjna                    |
| ionize               | jonizować                             |
| mass spectrometry    | spektrometria masowa                  |
| molecular ion (peak) | jon (pik) molekularny                 |
| path                 | droga, ścieżka, tor                   |

# <u>13.2.3. Exercise</u>

| 1. Match the expressions                                             |                           |
|----------------------------------------------------------------------|---------------------------|
| To change the direction of moving particles.                         | abundance                 |
| To force a particle to move faster.                                  | accelerate                |
| An ion having the same<br>molecular mass as the<br>initial molecule. | bombarding with electrons |
| An ion produced by the breakup of the initial molecule.              | deflect                   |
| The line along which a particle travels.                             | fragmentation ion         |
| One of the methods of ionization.                                    | ionize                    |
| The percentage of one type<br>of particles among all<br>others.      | molecular ion             |
| To convert molecules to ions.                                        | path                      |

# **13.3.** Determination of molecular structure: an example.

# 13.3.1. Analytical data:

| Empirical formula (from elemental analysis) | C <sub>2</sub> H <sub>4</sub> O                |
|---------------------------------------------|------------------------------------------------|
| Appearance                                  | colourless liquid, distinct smell              |
| Solubility in water                         | insoluble, pH of an aqueous suspension about 7 |
| Bromine water test                          | negative (no discolouration)                   |
| Brady's test                                | negative (no orange precipitate)               |

## 13.3.2. IR spectrum:



# 13.3.3. Proton NMR spectrum:





## 13.3.5. Structure determination:

- 1. The empirical formula  $C_2H_4O$  accounts for a relative mass of 44. No peak corresponding to this mass is seen in the mass spectrum. However, a quite prominent peak at m/z = 88 (double the mass of the empirical formula) indicates that the molecular formula of the compound is  $C_4H_8O_2$ .
- 2. The hydrogen deficiency index is  $4 \frac{1}{2} \times 8 + 1 = 1$ , which means that there is either one double bond or one closed ring in the molecule. Since a C=C bond is excluded by the bromine water test, the potential double bond must be a C=O bond.
- 3. A distinct, strong absorption band in the IR spectrum (near 1740 cm<sup>-1</sup>) confirms the presence of a carbonyl group in the molecule, so the hydrogen deficiency index 1 results from the C=O bond.
- 4. Brady's test excludes the presence of an aldehyde or a ketone. The neutral pH of the aqueous suspension and the absence of a strong, broad band at about 3000 cm<sup>-1</sup> (typical of O-H stretching in a carboxylic acid) exclude the presence of acids. So compound A must be an ester.

5. There are four possible structures of esters with the molecular formula  $C_4H_8O_2$ :



- 6. The proton NMR spectrum shows three absorption signals, which means that there are three different groups of equivalent hydrogen atoms in the molecule. This immediately excludes structure I, for which four separate signals could be predicted.
- 7. From integration, the intensity ratio of the NMR signals is 3:2:3. This means that there are two groups of three hydrogen atoms (CH<sub>3</sub>) and one group of two hydrogen atoms (CH<sub>2</sub>) in the molecule. This in turn excludes structure II, for which the intensity ratio 1:1:6 should be expected.
- 8. From the splitting pattern, we see that one CH<sub>3</sub> group is isolated (a singlet at 3.67 ppm), while the other CH<sub>3</sub> group is coupled to a CH<sub>2</sub> group (a set of quartets at 2.29 ppm and a triplet at 1.14 ppm). This is consistent with both structures III and IV.
- 9. Examining the correlation chart for methyl groups in esters:

| <b>CH</b> <sub>3</sub> -C(O)-O- | $\delta = 2.1 - 2.3 \text{ ppm}$ |
|---------------------------------|----------------------------------|
| -C(O)-O- <b>CH</b> <sub>3</sub> | δ = 3.4 – 3.8 ppm                |

immediately shows us that the compound A is in fact methyl propanoate (IV).

10. The intense peak at m/z = 57 in the mass spectrum, corresponding to the acylium fragmentation ion CH<sub>3</sub>CH<sub>2</sub>CO<sup>+</sup>, confirms this structure.

# 13.3.6. Reading comprehension

- 1. How was the molecular mass of A found?
- 2. How did we arrive at the conclusion that A is an ester?
- 3. Why could we exclude structures I and II using NMR spectra?
- 4. How was it possible to distinguish between structures III and IV, even though both should produce the same splitting pattern?
- 5. What confirmation for structure IV can we find in the mass spectrum?

# 13.3.7. New terms and expressions

| acylium ion               | jon (kation) acyliowy            |
|---------------------------|----------------------------------|
| consistent                | zgodny, spójny                   |
| distinct                  | wyraźny, wyrazisty               |
| elemental analysis        | analiza elementarna              |
| exclude                   | wykluczać, wyłączać              |
| expect                    | oczekiwać, spodziewać się        |
| hydrogen deficiency index | stopień nienasycenia             |
| potential                 | możliwy, potencjalny, ewentualny |
| predict                   | przewidywać                      |
| prominent                 | wybitny, wyróżniający się        |
| reference                 | wzorzec, odnośnik                |
| separate                  | osobny, oddzielny                |
| suspension                | zawiesina                        |

# 13.3.8. Exercise

1. Which statements are true (T) and which are false (F)?

# a. For structure I:

|    | - the NMR spectrum would contain two triplets and two quartets                                                     | T/F |
|----|--------------------------------------------------------------------------------------------------------------------|-----|
|    | - the MS would contain a prominent acylium ion peak at $m/z = 43$ .                                                | T/F |
| b. | IR spectra of carboxylic acids:                                                                                    |     |
|    | - do not contain a strong absorption band near 1700 cm <sup>-1</sup>                                               | T/F |
|    | - contain a strong, broad absorption band near 3000 cm <sup>-1</sup> .                                             | T/F |
| C. | Cyclohexanol contains six different sets of equivalent hydrogen atoms                                              | T/F |
| d. | For the isopropyl group, a set of doublets and a septet of intensity ratio 6:1 is seen in the proton NMR spectrum. | T/F |
| e. | Among the isomeric dinitrobenzenes, only 1,2-dinitrobenzene produces a singlet in the proton NMR spectrum.         | T/F |

- f. A molecular or fragmentation ion composed of two peaks of equal height T / F and separated by two m/z units suggests the presence of bromine.
- g. In alcohols, the hydroxyl hydrogen atom is always coupled to neighbouring T / F hydrogen atoms.
- h. Tetramethylsilane is the most common reference used in NMR T / F spectroscopy.

# 14. Basic Concepts in Physical Chemistry. Part I.

# 14.1. Enthalpy

Physical and chemical changes are usually accompanied by energy transfer to or from the surroundings. Energy may be exchanged with the surroundings in two forms: work or heat. Thermochemistry is the branch of chemistry that studies the heat changes of chemical reactions, while thermodynamics is the science dealing with energy-heat-work conversions in more general terms.

Enthalpy is the thermodynamic property of matter that describes the capacity of the system to release heat. Absolute values of enthalpy *H* cannot be determined. Only enthalpy changes  $\Delta H$  can be measured experimentally as the heat exchanged with the surroundings under constant pressure. In exothermic processes, heat is released to the surroundings, so the enthalpy of the system decreases and the enthalpy change has a negative sign ( $\Delta H < 0$ ). Conversely, in endothermic processes heat is absorbed from the surroundings, the enthalpy of the system increases, and the enthalpy change is positive ( $\Delta H > 0$ ).

Enthalpy changes are determined by a technique known as calorimetry. For example, enthalpies of combustion are measured in a bomb calorimeter, in which a known amount of a substance is burned in oxygen and the resulting temperature change gives clues to the actual amount of heat released.

Standard enthalpy changes, i.e. enthalpy changes under standard conditions (pressure 100 kPa, temperature usually 298 K, all reagents in their standard states), are listed in data bases. The most important of these quantities is the standard enthalpy of formation. Enthalpy is a state function, so if we know the standard enthalpies of formation for all reagents, we can compute the standard enthalpy change for any reaction using Hess's law of constant heat summation. Hess's law is a direct consequence of the first law of thermodynamics:

## First law of thermodynamics (principle of conservation of energy):

Energy can be neither created nor destroyed. Energy can only change its form. The sum total of energy in the universe is constant.

## 14.1.1. Reading comprehension

- 1. What are the two forms of energy transfer between a system and its surroundings?
- 2. What is the difference between thermodynamics and thermochemistry?
- 3. Define the term 'exothermic process'.
- 4. What technique is used to determine enthalpy changes?
- 5. What is a standard enthalpy change?
- 6. What does the first law of thermodynamics state?

### 14.1.2. New terms and expressions

| absolute                            | bezwzględny                     |
|-------------------------------------|---------------------------------|
| atomization                         | atomizacja                      |
|                                     |                                 |
| bomb calorimeter                    | bomba kalorymetryczna           |
| calorimetry                         | kalorymetria                    |
| capacity                            | zdolność, pojemność             |
| change (chemical, physical)         | przemiana (chemiczna, fizyczna) |
| compute                             | obliczyć                        |
| concept                             | koncepcja, pojęcie              |
| consequence                         | konsekwencja, skutek            |
| conversely                          | na odwrót, przeciwnie           |
| conversion                          | przemiana, przekształcenie      |
| create                              | stworzyć                        |
| deal with                           | mieć do czynienia z             |
| destroy                             | zniszczyć                       |
| endothermic                         | endotermiczny                   |
| energy transfer                     | przepływ energii                |
| enthalpy of combustion              | entalpia spalania               |
| enthalpy of formation               | entalpia tworzenia              |
| exothermic                          | egzotermiczny                   |
| first law of thermodynamics         | pierwsza zasada termodynamiki   |
| fusion                              | stopienie                       |
| heat                                | ciepło                          |
| lattice enthalpy                    | entalpia (energia) sieci        |
| principle of conservation of energy | zasada zachowania energii       |

| release                       | uwolnić, wydzielić             |
|-------------------------------|--------------------------------|
| standard conditions           | warunki standardowe            |
| standard state                | stan standardowy               |
| state function                | funkcja stanu                  |
| surroundings                  | otoczenie                      |
| system                        | układ, system                  |
| thermodynamics, thermodynamic | termodynamika, termodynamiczny |
| thermochemistry               | termochemia                    |
| Universe                      | Wszechświat                    |
| vapourization                 | odparowanie                    |
| work                          | praca                          |

# 14.1.3. Exercises

1. Match the types of standard enthalpy changes with their definitions.

# The enthalpy change taking place when 1 mole of a substance in its standard state:

is formed as a ionic crystal from individual ions in the gaseous state at 100 kPa and 298 K

is converted completely to individual atoms in the gaseous state at 100 kPa and 298 K

is burned in excess oxygen at 100 kPa and 298 K.

is formed from the elements in their standard states at 100 kPa and 298 K.

is converted from its solid to its liquid form at 100 kPa

is dissolved in excess solvent at 100 kPa and 298 K

is converted from a solid to a vapour at 100 kPa

is converted from a liquid to a vapour at 100 kPa

standard enthalpy of formation

standard enthalpy of combustion

standard enthalpy of fusion

standard enthalpy of vapourization

standard enthalpy of sublimation

standard enthalpy of solution

standard enthalpy of atomization

lattice enthalpy

#### 14.2. Entropy and free energy

Entropy is a state function that represents the degree of disorder in the system. Entropy tells us in how many ways a set of particles in the system (or in the surroundings) can be arranged and in how many ways energy can be distributed among them. For example, an ionic crystal is a highly ordered system, since every ion has a specific position in a crystal lattice and it may possess vibrational energy in rather a narrow range. Therefore, the entropy *S* of a crystalline solid is usually low. On the other hand, a gas is a highly disordered system, since particles move freely in the container and may possess kinetic energy over quite a broad range. Consequently, gases are characterized by very high entropy values.

The second law of thermodynamics states that a physical or chemical change is spontaneous only when the total entropy of the system and the surroundings increases ( $\Delta S_{total} > 0$ ). Since the entropy change of the surroundings  $\Delta S_{surr}$  is proportional to the enthalpy change  $\Delta H$  of the system and to the temperature *T*, the condition for the spontaneity of change takes the following form:

$$\Delta G = \Delta H - T \Delta S < 0 \tag{1}$$

where  $\Delta G$  is termed the change in free energy or Gibbs' free energy. For a spontaneous change, the free energy change must be negative ( $\Delta G < 0$ ). Equation (1) explains why exothermic reactions (with  $\Delta H < 0$ ) are usually spontaneous and why some endothermic reactions that are not spontaneous at low temperature may become spontaneous at a sufficiently high temperature (just consider what happens to the term  $T\Delta S$  when the temperature rises).

#### Second law of thermodynamics:

Spontaneous natural processes increase the overall entropy of the universe.

#### 14.2.1. Reading comprehension

- 1. Give the definition of entropy.
- 2. Which system has a higher entropy: liquid water or solid ice?
- 3. Why are gases characterized by exceptionally high entropies?
- 4. What is the fundamental condition for a process to be spontaneous?
- 5. Why are exothermic reactions usually spontaneous?

14.2.2. New terms and expression

| arrange                         | ułożyć, uporządkować                                    |
|---------------------------------|---------------------------------------------------------|
| assume (take)                   | przyjąć                                                 |
| become                          | stać się                                                |
| broad                           | szeroki                                                 |
| consider                        | rozważać                                                |
| container                       | zbiornik, naczynie                                      |
| degree                          | stopień                                                 |
| disorder, disordered            | nieuporządkowanie, nieuporządkowany                     |
| distribute                      | rozdzielić                                              |
| entropy                         | entropia                                                |
| free energy, Gibbs' free energy | energia (entalpia) swobodna, energia<br>swobodna Gibbsa |
| kinetic energy                  | energia kinetyczna                                      |
| lattice                         | sieć (krystaliczna)                                     |
| narrow                          | wąski                                                   |
| order, ordered                  | uporządkowanie, uporządkować                            |
| overall                         | całkowity                                               |
| proportional                    | proporcjonalny                                          |
| second law of thermodynamics    | druga zasada termodynamiki                              |
| spontaneity                     | spontaniczność, samorzutność                            |
| spontaneous                     | spontaniczny, samorzutny                                |
| sufficiently                    | odpowiednio                                             |
| vibrational                     | związany z drganiami, wibracyjny                        |
|                                 |                                                         |

# 14.2.3. Exercises

1. Fill in the blanks.

The standard ......  $(\Delta H^0)$  for the decomposition of calcium

carbonate:

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$ 

is +178 kJ mol<sup>-1</sup>. This means that the reaction is ...... . The standard

..... change for this reaction ( $\Delta S^0$ ) is +161 J K<sup>-1</sup>mol<sup>-1</sup>. This value

| is large and, since one of the products is a                                                                |
|-------------------------------------------------------------------------------------------------------------|
| After the reaction, the system is much more than before it. At                                              |
| (25°C), the                                                                                                 |
| change of the reaction ( $\Delta G$ ) is +130 kJ mol <sup>-1</sup> . At this temperature, the decomposition |
| of calcium carbonate is                                                                                     |
| stable. The reaction, the absorption of                                                                     |
| by calcium is is At 1000°C                                                                                  |
| though, $\Delta G = -27 \text{ kJ mol}^{-1}$ and the reaction becomes                                       |
| This explains why the decomposition of calcium requires                                                     |
| at high                                                                                                     |

# 2. Give the appropriate term or phrase.

| a form of energy transfer other than work                                |  |
|--------------------------------------------------------------------------|--|
| heat transfer that occurs at constant pressure                           |  |
| a function that describes the degree of disorder of the system           |  |
| a reaction as a result of which energy is evolved                        |  |
| a function that describes the capacity of a process to run spontaneously |  |
| a process for which $\Delta G > 0$                                       |  |
| a process for which $\Delta H > 0$                                       |  |
# 15. Basic Concepts in Physical Chemistry. Part II.

### 15.1. Chemical equilibrium

A pink solution of cobalt(II) chloride  $CoCl_2$  in dilute hydrochloric acid HCl contains  $[Co(H_2O)_6]^{2+}$  complex ions. When the solution is heated, it turns blue owing to the formation of  $[CoCl_4]^{2-}$  ions – these have a different geometry. If, in turn, the hot solution is allowed to cool down, the pink colour reappears. This means that the reaction

$$[\operatorname{Co}(\operatorname{H}_2\operatorname{O})_6]^{2^+}(aq) + 4 \operatorname{Cl}^{-}(aq) \rightleftharpoons [\operatorname{CoCl}_4]^{2^-}(aq) + 6 \operatorname{H}_2\operatorname{O}(l)$$
  
blue

is reversible. At high temperatures the forward reaction occurs (from left to right), while at low temperature the reverse reaction takes place. The reversibility of the reaction is indicated by the sign' $\overleftarrow{\phantom{a}}$ ' (two arrows).

Many reversible reactions run forwards and backwards at the same time. In this case, neither the forward nor the reverse reaction goes to completion. Instead, a state of dynamic equilibrium is reached where the overall concentrations of reactants and products do not change over time. In a state of dynamic equilibrium, the rates of the forward and reverse reactions are exactly the same, so on a macroscopic scale the concentrations do not change.

Chemical equilibrium is characterized by the equilibrium constant  $K_c$ . For the reaction

$$aA + bB \Longrightarrow cC + dD$$

it is defined as

$$\mathcal{K}_{c} = \frac{\left[\mathsf{C}\right]^{c} \left[\mathsf{D}\right]^{d}}{\left[\mathsf{A}\right]^{a} \left[\mathsf{B}\right]^{b}}$$

where [C] and [D] are the concentrations (molarities) of the products, [A] and [B] are the concentrations of the reactants, and *a*, *b*, *c*, *d* are stoichiometric coefficients. Very large values of  $K_c$  indicate that the forward reaction is strongly favoured and that the reaction is practically irreversible. On the other hand, very low  $K_c$  values mean that the reverse reaction is practically irreversible. If values of  $K_c$  are intermediate, an equilibrium mixture is formed that contains both reactants and products. Chemical equilibrium may be affected by the concentrations of reagents, pressure (for reactions taking place in the gaseous phase) and temperature, in accordance with Le Chatelier's principle. Using an excess of reactants and removing the reaction products favours the forward reaction. Increasing the pressure favours reactions occurring in the gaseous phase, where the overall volume of products is smaller than the volume of reactants. In endothermic reactions, a high temperature shifts the equilibrium towards the products, whereas in exothermic reactions the effect is the opposite. Knowing the effects of concentration, pressure and temperature on chemical equilibrium helps to maximize the yield of a desired product of reversible reactions.

#### 15.1.1. Reading comprehension

- 1. Describe the behaviour of a cobalt(II) chloride hydrochloric acid solution on being heated and cooled.
- 2. What kinds of reaction are reversible?
- 3. How do we indicate that a reaction is reversible?
- 4. Define the equilibrium constant.
- 5. What is the significance of a very low value of  $K_c$ ?
- 6. How does concentration affect chemical equilibrium?
- 7. How does temperature affect chemical equilibrium?

| accomplish           | osiągnąć                                |
|----------------------|-----------------------------------------|
| affect               | mieć wpływ                              |
| allow                | pozwolić                                |
| arrow                | strzałka                                |
| backwards            | do tyłu                                 |
| catalyst             | katalizator                             |
| character            | znak drukarski                          |
| characterize         | charakteryzować                         |
| chemical equilibrium | równowaga chemiczna                     |
| coefficient          | współczynnik                            |
| completion           | koniec, stan całkowitego przereagowania |

| 15.1.2. | New | terms | and | ex | pressions |
|---------|-----|-------|-----|----|-----------|
|         |     |       |     |    |           |

| desired                  | pożądany                                                                                       |
|--------------------------|------------------------------------------------------------------------------------------------|
| dilute (solution)        | (roztwór) rozcieńczony                                                                         |
| dynamic equilibrium      | równowaga dynamiczna                                                                           |
| effect                   | wpływ                                                                                          |
| equilibrium (equilibria) | równowaga (równowagi)                                                                          |
| equilibrium constant     | stała (równowagi) reakcji                                                                      |
| equilibrium mixture      | mieszanina równowagowa                                                                         |
| excess                   | nadmiar                                                                                        |
| favour (US favor)        | sprzyjać                                                                                       |
| forwards                 | do przodu                                                                                      |
| forward reaction         | reakcja w takim kierunku, jaki przedstawia równanie chemiczne ('do przodu')                    |
| irreversible reaction    | reakcja nieodwracalna                                                                          |
| Le Chatelier's principle | reguła przekory Le Chateliera                                                                  |
| macroscopic              | makroskopowy                                                                                   |
| maximize                 | zwiększać, maksymalizować                                                                      |
| moderate                 | umiarkowany                                                                                    |
| molarity                 | stężenie molowe                                                                                |
| plunger                  | tłok (np. strzykawki)                                                                          |
| product                  | produkt                                                                                        |
| rate (reaction rate)     | szybkość (szybkość reakcji)                                                                    |
| reactant                 | substrat                                                                                       |
| reagent                  | reagent                                                                                        |
| reappear                 | pojawić się ponownie                                                                           |
| removal                  | usuwanie                                                                                       |
| reverse reaction         | reakcja w kierunku przeciwnym do tego, który przedstawia równanie chemiczne, reakcja odwrotna. |
| reversibility            | odwracalność                                                                                   |
| reversible reaction      | reakcja odwracalna                                                                             |
| stoichiometric           | stechiometryczny                                                                               |
| turn blue / pink         | zmienić kolor na niebieski/różowy                                                              |

## 15.1.3. Exercises

1. Indicate which statements are true (T) and which are false (F).

| a. | In a state of chemical equilibrium, neither the forward nor the reverse reaction occurs.                     | T/F |
|----|--------------------------------------------------------------------------------------------------------------|-----|
| b. | A very small value of $K_c$ indicates that the forward reaction practically does not occur.                  | T/F |
| C. | Increasing the temperature of an exothermic reaction shifts the equilibrium towards the products.            | T/F |
| d. | Using an excess of reactant is a common way of increasing yields of products in reversible reactions.        | T/F |
| e. | The esterification of a carboxylic acid with an alcohol is a well-known example of an irreversible reaction. | T/F |
| f. | The position of chemical equilibrium is strongly affected by catalysts.                                      | T/F |

2. Brown nitrogen dioxide  $NO_2$  exists in equilibrium with the colourless dimer dinitrogen tetroxide  $N_2O_4$ , according to the following thermochemical equation:

 $2 \operatorname{NO}_2(g) \Longrightarrow \operatorname{N}_2\operatorname{O}_4(g) \quad \varDelta H^\circ = -58 \text{ kJ mol}^{-1}$ 

A glass cylinder contains an equilibrium mixture of both gases at 25°C, closed at the top by a movable plunger. Which of the following actions will darken the colour of the gas mixture, and which will have the opposite effect?

|    | Action                                              | Colour           |
|----|-----------------------------------------------------|------------------|
| a. | Forcefully depressing the plunger.                  | darker / lighter |
| b. | Withdrawing the plunger.                            | darker / lighter |
| C. | Placing the cylinder in a mixture of water and ice. | darker / lighter |
| d. | Placing the cylinder in a boiling-water bath.       | darker / lighter |

#### **15.2. Reaction kinetics**

Some reactions are extremely fast. Explosives detonate almost instantaneously, producing huge amounts of gases in a fraction of a second. On the other hand, some reactions are extremely slow. The radioactive decay of the uranium-238 isotope is so slow (half-life = 4.5 billion years) that we can still find useful amounts of this element in the Earth's crust. Again, some reactions, particularly biochemical ones, occur at a carefully controlled rate, which enables living organisms to function properly.

The rate of a reaction is very important from the economic point of view. When trying to minimize costs, people usually want to accelerate desirable processes and to retard or stop harmful ones. The branch of chemistry dealing with reaction rates is called 'kinetics'.

Collision theory requires that reacting molecules must collide with one another to form the reaction product. That is why most reactions occur in the gaseous or liquid phase, as only then are molecules free to move. The reaction rate is proportional to the number of collisions in unit time. Nevertheless, only a very tiny fraction of all collisions are effective.

In order to form a reaction product or products, molecules must assume a particular orientation with respect to one another. Since only one such orientation is possible and we can think of thousands of other orientations that are ineffective, the probability of finding the 'right' orientation is quite low, and only a few collisions result in a chemical reaction. Another limitation comes from the consideration of energy requirements. Molecules are surrounded by electrons that form a kind of fuzzy, negatively charged cloud around them. As two molecules approach one another, the repulsion between the electron clouds start to grow. Only when the combined kinetic energies of the molecules overcome this intermolecular repulsion can the electrons to occur is called the activation energy. If the kinetic energy of the colliding molecules is lower than the activation energy, the collisions are ineffective.

The rate of reaction is affected by the concentration of reactants, temperature and catalysts. Increasing the concentration of the reactants increases the reaction rate, since there are more molecules per unit volume and the collisions between them become more frequent. Temperature affects the Maxwell-Boltzmann distribution of kinetic energy among the molecules, so at a higher temperature more molecules posses a kinetic energy exceeding the activation energy, and the reaction rate increases. Catalysts are substances that lower the activation energy by offering an alternative mechanism for the reaction. This again leads to a larger number of molecules with an energy exceeding the new, lower activation energy, more collisions become effective and the reaction rate increases. An inhibitor is a kind of 'negative' catalyst that increases the activation energy and slows down the reaction. Both catalysts and inhibitors are important chemicals in many practical applications. For example, nickel is a commonly used catalyst in the hydrogenation of unsaturated fats, and ascorbic acid (vitamin C) is a food additive preventing undesirable oxidation reactions.

## 15.2.1. Reading comprehension

- 1. Give examples of very fast and very slow reactions.
- 2. Why must the rate of biochemical reactions be carefully controlled?
- 3. What is the basic statement of collision theory?
- 4. How does the orientation of molecules affect the effectiveness of collisions?
- 5. How does the kinetic energy of molecules affect the effectiveness of collisions?
- 6. Why does the reaction rate increase with increasing reactant concentration?
- 7. How does temperature affect the rate of reaction?
- 8. What are catalysts?

| activation energy | energia aktywacji          |
|-------------------|----------------------------|
| additive          | substancja dodana          |
| billion           | miliard                    |
| catalyst          | katalizator                |
| collide           | zderzać (się)              |
| collision theory  | teoria zderzeń (aktywnych) |
| consideration     | rozważanie                 |
| crust             | skorupa                    |
| desirable         | pożądany                   |

## 15.2.2. New terms and expressions

| detonate                       | wybuchnąć                    |
|--------------------------------|------------------------------|
| enhance                        | zwiększyć                    |
| exceed                         | przekraczać, przewyższać     |
| explosive                      | materiał wybuchowy           |
| fuzzy                          | rozmyty, mglisty             |
| hydrogenation                  | uwodornienie                 |
| ineffective                    | nieefektywny                 |
| inhibitor                      | inhibitor                    |
| intermolecular                 | międzycząsteczkowy           |
| joint                          | łączny                       |
| kinetic energy                 | energia kinetyczna           |
| kinetics                       | kinetyka                     |
| limitation                     | ograniczenie                 |
| Maxwell-Boltzmann distribution | rozkład Maxwella-Boltzmanna  |
| mechanism                      | mechanizm                    |
| minimize                       | zminimalizować               |
| orientation                    | orientacja, ułożenie         |
| prevent                        | zapobiegać                   |
| probability                    | prawdopodobieństwo           |
| radioactive decay              | rozpad radioaktywny          |
| rate                           | szybkość (reakcji)           |
| rearrange                      | przegrupować, ułożyć na nowo |
| undesirable                    | niepożądany                  |
| unsaturated                    | nienasycony                  |
| <u>-</u>                       | •                            |

# 15.2.3. Exercises

# 1. Give expressions that match the following definitions.

| The branch of chemistry studying the speed at which chemical processes occur.                                   |  |
|-----------------------------------------------------------------------------------------------------------------|--|
| A commonly accepted theory explaining at<br>the microscopic level how chemical<br>reactions take place.         |  |
| A factor that affects the Maxwell-Boltzmann distribution of energy among molecules and hence the reaction rate. |  |
| The particular way in which a reaction occurs.                                                                  |  |
| The transformation of one isotope to another by the emission of radiation.                                      |  |
| The speed at which a chemical change occurs.                                                                    |  |
| A substance capable of lowering the activation energy of a reaction.                                            |  |
| A substance that decomposes rapidly to produce a large amount of gases.                                         |  |
| A substance that prevents undesirable processes from occurring.                                                 |  |
| The minimum energy necessary to overcome intermolecular repulsion.                                              |  |
| The mutual orientation of colliding molecules that results in a chemical reaction.                              |  |

## 2. Fill in the blanks

 $Fe = N_2(g) + 3 H_2(g) = 2 NH_3(g) \qquad \Delta H^\circ = -92 \text{ kJ mol}^{-1}$ 

# 16. Pollution and Purification of Water

#### 16.1. Water: circulation and resources

All life forms on Earth depend on water. An average human being needs to consume several litres of freshwater per day to sustain life. Today, about 10% of the human population is experiencing a scarcity of water, but this figure is expected to rise to 38% by 2025. Water resources are an essential component of the Earth's hydrosphere and an indispensable part of all terrestrial ecosystems.

Water circulates throughout Earth's environment by means of the solarpowered hydrologic cycle. Water enters the atmosphere by evaporation of liquid water, the transpiration of plants and the sublimation of solid water (snow, ice). In the atmosphere, it is present as vapour (measured as humidity) and as suspended droplets of liquid water or particles of ice. The relative humidity of air is defined as the ratio (expressed as a percentage) of the partial pressure of water vapour at a particular temperature to the saturated vapour pressure at that temperature. When water molecules leave the vapour phase to form liquid water or ice, condensation begins.

The total global amount of water is 1.4 billion cubic metres, of which nearly 98% is present as saline (salt) water in seas and oceans, which is unsuitable for drinking and for most agricultural purposes. The remaining amount is freshwater; only 13% of this is liquid, while the rest is trapped as snow, snowpack, ice and glaciers. The vast majority of liquid freshwater is located beneath the Earth's surface as groundwater. This is stored below the surface in porous rock formations referred to as aquifers. Bodies of freshwater include lakes, ponds and reservoirs. Water flows from higher altitudes down to the seas and oceans in rivers and streams.

Today, lakes and rivers are one of the main sources of drinking water, although they constitute less than 0.1% of the total water resources. Water is the cheapest and most universally available raw material. Currently, the major global uses of water are as cooling water in electrical power generation and for irrigation in agriculture. Some industrial processes consume vast amounts of water: e.g. 8000 litres of water are needed to produce 1 kg of aluminium, and as many as 400 000 litres to manufacture 1 (one!) car.

## 16.1.1. Reading comprehension

- 1. Why is water so essential to humankind?
- 2. What is the driving force behind the water cycle?
- 3. What are the forms of water in the atmosphere?
- 4. Why are the majority of global water resources unsuitable for drinking?
- 5. Name the solid forms of freshwater.
- 6. Give the names of freshwater bodies.
- 7. What are the main uses of water as a raw material?

| agricultural                   | rolniczy                       |
|--------------------------------|--------------------------------|
| aluminium (US aluminum)        | aluminium, glin                |
| aquifer                        | warstwa wodonośna              |
| billion                        | miliard                        |
| circulate                      | krążyć                         |
| condensation                   | skraplanie                     |
| content                        | zawartość                      |
| cooling water                  | woda chłodząca                 |
| cubic metre                    | metr sześcienny                |
| drinking water                 | woda pitna                     |
| droplet                        | kropla                         |
| the Earth's surface            | powierzchnia ziemi             |
| electrical power generation    | produkcja energii elektrycznej |
| enormous                       | ogromny                        |
| essential component            | zasadniczy element             |
| evaporation                    | odparowanie                    |
| experience                     | doświadczać                    |
| freshwater                     | woda słodka                    |
| glacier                        | lodowiec                       |
| global amount / global numbers | światowe zasoby                |
| groundwater                    | wody podziemne                 |
| humidity                       | wilgotność                     |

#### 16.1.2. New terms and expressions

| hydrologic cycle          | obieg hydrologiczny                 |
|---------------------------|-------------------------------------|
| hydrosphere               | hydrosfera                          |
| ice                       | lód                                 |
| indispensable             | niezastąpiony                       |
| irrigation                | nawadnianie                         |
| lake                      | jezioro                             |
| partial pressure          | ciśnienie (prężność) cząstkowe      |
| percentage                | udział procentowy                   |
| pond                      | staw                                |
| raw                       | surowy, nieprzetworzony             |
| reservoir                 | zbiornik retencyjny                 |
| resource                  | źródło                              |
| river                     | rzeka                               |
| rock formation            | utwór skalny                        |
| saline water              | woda słona                          |
| saturated vapour pressure | ciśnienie (prężność) pary nasyconej |
| scarcity                  | niedobór                            |
| snow                      | śnieg                               |
| snowpack                  | zmarzlina                           |
| solar-power               | energia słoneczna                   |
| store                     | magazynować                         |
| stream                    | strumień                            |
| supply                    | zasilanie                           |
| suspend                   | zawiesić                            |
| sustain                   | podtrzymać, zrównoważyć             |
| terrestrial               | lądowy                              |
| transpiration             | transpiracja                        |
| trap                      | uwięzić                             |
| vapour (US vapor)         | para                                |

# 16.1.3. Exercises

| 1. | Match | the | corresponding | phrases |
|----|-------|-----|---------------|---------|
|----|-------|-----|---------------|---------|

| circulation of water                                            | 10%                            |
|-----------------------------------------------------------------|--------------------------------|
| condensation                                                    | 13%                            |
| content of water vapour in air                                  | 98%                            |
| freshwater bodies                                               | cooling and irrigation         |
| global percentage of saline<br>(salt) waters                    | conversion of vapour to liquid |
| lakes and rivers                                                | groundwater                    |
| major uses of water                                             | humidity                       |
| the origin of energy<br>consumed by the<br>evaporation of water | hydrologic cycle               |
| the percentage of<br>freshwater which is in liquid<br>form      | lakes, ponds, reservoirs       |
| the percentage of people<br>experiencing water scarcity         | main sources of drinking water |
| snow, ice, glacier                                              | solar                          |
| water stored under the<br>Earth's surface                       | solid forms of water           |

2. Which statements are true (T) and which are false (F)?

| a. | Freshwater constitutes 50% of global water resources.                               | T / F |
|----|-------------------------------------------------------------------------------------|-------|
| b. | The major global uses of water are for cooling and irrigation.                      | T / F |
| C. | In 2025 about 38% of the human population will be experiencing a scarcity of water. | T / F |
| d. | Some species of bacteria can survive without water at all.                          | T / F |
| e. | Water enters the atmosphere by the evaporation of liquid water.                     | T / F |
| f. | Most freshwater is trapped as snow, snowpack, ice and glaciers.                     | T / F |
| g. | The water located under the Earth's surface is found in reservoirs.                 | T / F |

#### 16.2. The pollution, purification and disinfection of water

The pollution of natural waters is a worldwide problem. Water pollutants may be both chemical and biological in character. The most important classes of chemical pollutants include heavy metals (such as cadmium, lead or arsenic), organometallic compounds (e.g. alkylmercury or organotin derivatives), inorganic pollutants (e.g. cyanides, hydrogen sulphide, ammonia, nitrites and nitrates, as well as an excess of natural phosphates or fluorides), organic pollutants (e.g. oxygen- consuming faecal matter and food waste, detergents, pesticides, polychlorinated biphenyls) and radionuclides (radium, strontium or caesium). Biological pollution is caused by algae as well as pathogens such as bacteria, viruses and some protozoa.

Water pollution is generally characterized by oxygen parameters, such as dissolved oxygen, biochemical oxygen demand and chemical oxygen demand, but also by the acidity, alkalinity, salinity, taste, odour and colour of the water. A detailed specification of water quality demands the determination of over 50 parameters, including individual concentrations of particular elements and compounds as well as physicochemical parameters.

Water from natural sources usually requires varying degrees of treatment before it is suitable for use in households or industrial applications. The first step in the purification process is aeration. Bubbling air through water effectively removes dissolved gases such as hydrogen sulphide and other volatile organic compounds, which in turn significantly reduce any unpleasant odour. Another advantage of aeration is that soluble iron (II) is oxidized to insoluble iron (III), which can be readily removed from water as a suspension. If water is excessively hard, calcium and magnesium ions are removed by the addition of lime in the next step.

Water is disinfected by adding elemental chlorine or ozone. The use of chlorine, though, leads to the formation of undesirable organic pollutants called trihalomethanes. But this problem can be avoided by the alternative use of chlorine dioxide. Recently, new advanced oxidation technologies have been introduced at the final stage of water treatment. They involve ultraviolet irradiation combined with the use of catalysts or oxidizing agents, followed by micro- or ultrafiltration.

## 16.2.1. Reading comprehension

- 1. What is the nature of water pollutants?
- 2. What are the most important classes of chemical pollutants?
- 3. Name the main biological pollutants commonly found in natural waters.
- 4. Explain the meaning of 'oxygen parameters'.
- 5. What technological process is primarily used for the purification of water?
- 6. Why are excess magnesium and calcium removed during purification?
- 7. What are the main agents used for disinfecting water?
- 8. Explain the term 'advanced oxidation technology'.

| acidity                         | kwasowość                                |
|---------------------------------|------------------------------------------|
| advanced oxidation technologies | techniki pogłębionego utleniania         |
| aeration                        | napowietrzanie                           |
| alga, algae                     | glon, glony                              |
| alkalinity                      | zasadowość                               |
| alkylmercury                    | alkilortęć                               |
| allow                           | pozwolić                                 |
| ammonia                         | amoniak                                  |
| arsenic                         | arsen                                    |
| biochemical oxygen demand       | biochemiczne zapotrzebowanie na tlen BZT |
| bubble                          | bąbelek, przepuszczać gaz przez ciecz    |

#### 16.2.2. New terms and expressions

| cadmium                                        | kadm                                   |
|------------------------------------------------|----------------------------------------|
| catalyst                                       | katalizator                            |
| cause                                          | powodować, przyczyniać się do          |
| caesium (US cesium)                            | cez                                    |
| chemical oxygen demand                         | chemiczne zapotrzebowanie na tlen ChZT |
| chlorine                                       | chlor                                  |
| chlorine dioxide                               | dwutlenek chloru                       |
| colourless                                     | bezbarwny                              |
| container                                      | zbiornik, naczynie                     |
| cyanide                                        | cyjanek                                |
| derivative                                     | pochodna                               |
| detergent                                      | środek piorący, detergent              |
| disinfection                                   | dezynfekcja                            |
| dissolve                                       | rozpuszczać                            |
| dissolved oxygen                               | tlen rozpuszczony                      |
| evaluation                                     | ocena, badanie                         |
| excessive                                      | nadmierny                              |
| faecal matter, faeces (US fecal matter, feces) | odchody                                |
| fluoride                                       | fluorek                                |
| food waste                                     | odpadki żywności                       |
| hard water                                     | twarda woda                            |
| heavy metals                                   | metale ciężkie                         |
| household                                      | gospodarstwo domowe                    |
| hydrogen sulphide                              | siarkowodór                            |
| individual                                     | poszczególny, indywidualny             |
| industrial                                     | przemysłowe                            |
| insoluble                                      | nierozpuszczalny                       |
| introduce                                      | wprowadzić                             |
| involve                                        | polegać na, sprowadzać się do          |
| lead                                           | ołów                                   |
| lime                                           | wapno (tlenek wapnia)                  |
| nitrite                                        | azotan(III), azotyn                    |
| nitrate                                        | azotan(V), azotan                      |

| occur                      | zachodzić, zdarzać się, występować |
|----------------------------|------------------------------------|
| odour (US odor)            | zapach                             |
| organometallic compounds   | związki metaloorganiczne           |
| organotin                  | związki organocyny                 |
| ozone                      | ozon                               |
| pesticide                  | pestycyd                           |
| phosphate                  | fosforan                           |
| physicochemical            | fizyko-chemiczne                   |
| plumbing                   | orurowanie, praca hydraulika       |
| pollutant                  | substancja zanieczyszczająca       |
| pollution                  | zanieczyszczenie                   |
| polychlorinated biphenyls  | polichlorowane bifenyle            |
| precipitate                | wytrącić (osad), osad              |
| protozoa                   | pierwotniaki                       |
| purify                     | oczyszczać                         |
| radionuclides              | radionuklidy                       |
| radium                     | rad                                |
| readily                    | swobodnie, z łatwością             |
| reddish                    | czerwonawy                         |
| salinity                   | zasolenie                          |
| sample                     | próbka                             |
| soluble                    | rozpuszczalny                      |
| strontium                  | stront                             |
| suspension                 | zawiesina                          |
| taste                      | smak                               |
| transparent                | przeźroczysty                      |
| trihalomethanes            | trihalometany                      |
| turbid                     | mętny, nieprzeźroczysty            |
| ultraviolet irradiation    | naświetlanie promieniowaniem UV    |
| volatile organic compounds | lotne związki organiczne           |
| water treatment            | oczyszczanie wody                  |
| worldwide                  | o światowym zasięgu                |

#### 16.2.3. Exercises

### 1. Fill in the blanks

- 2. Write two three sentences on the following problems.
- 1. What do you think is the origin of the word 'plumbing'?
- 2. Explain how outdated water supply systems could be a source of toxic metals?
- 3. What is the purpose of water aeration?
- 4. When a sample of groundwater is taken from a source, it is initially transparent and colourless. However, if it is allowed to stand in an open container, it quickly turns reddish and turbid. Finally, a reddish-brown solid precipitates. What can you say about the composition of this water? Try to explain the processes occurring in such a sample of water.

#### 16.3. Groundwater and its pollution

Most of the freshwater on our planet is located underground, half of it at depths of over one kilometre. Underground water ranges in age from a few to millions of years. The ultimate source of groundwater is meteoric water from rain or snow that percolates down to (infiltrates) aquifers. An aquifer (a kind of underground reservoir) is formed when groundwater drenches layers of porous or highly fractionated rocks. These are usually sands, sandstones or gravels. At the bottom, the aquifer is bounded by an impermeable layer such as clay. Constant infiltration into the aquifer occurs in so-called recharge zones. The layer where all the pores are filled with water is referred to as the saturated zone. The top of this zone is called the water table.

Groundwater is usually extracted through wells – they are the source of drinking water for nearly half the world's human population.

Historically, groundwater used to be considered the purest form of natural water. Indeed, due to the infiltration process and the long residence time underground, groundwater contains much less organic matter than surface water. Also, most of the microorganisms are usually filtered out as the groundwater collects in the aquifer. Groundwater, however, may dissolve minerals from the rock formations through which it passes. Occasionally, the content of undesirable compounds (including dissolved salts) may become excessively high.

The nitrate ion is the inorganic contaminant of groundwater that is of the greatest concern. It originates from the application of nitrogenous fertilizers, sewage collected in septic tanks and atmospheric deposition. Typical organic contaminants found in most groundwater supplies are chlorinated solvents (especially tri- and tetrachloroethene), BTX hydrocarbons and other petroleum products, including MTBE.

The decontamination of groundwater usually involves pump-and-treat systems that pump raw water from the aquifer, treat it to remove the contaminants and return the purified water to the aquifer or to some other water body.

## 16.3.1. Reading comprehension

- 1. What is the age range of groundwater?
- 2. Where does groundwater originate?
- 3. Explain the term 'aquifer'.
- 5. How is groundwater usually extracted?
- 6. Why does groundwater contain less organic matter and fewer microorganisms than surface waters?
- 7. What are the main sources of nitrate compounds in groundwater?
- 8. Name some typical organic contaminants found in groundwater.

| atmospheric deposition                                 | anad atmosforugzny                                           |
|--------------------------------------------------------|--------------------------------------------------------------|
| atmospheric deposition                                 | opad atmosferyczny                                           |
| bottom                                                 | dno, dół (dolna część)                                       |
| BTX compounds (benzene, toluene, ethylbenzene, xylene) | substancje z grupy BTX (benzen, toluen, etylobenzen, ksylen) |
| bulk                                                   | większość                                                    |
| chlorinated solvent                                    | rozpuszczalnik chlorowcoorganiczny                           |
| clay                                                   | glina (minerał ilasty)                                       |
| composed of (consists of)                              | złożony z                                                    |
| contaminant                                            | czynnik odpowiedzialny za skażenie                           |
| decontamination                                        | oczyszczenie, odkażenie                                      |
| dissolved salts                                        | sole rozpuszczone                                            |
| drench                                                 | nasączyć, przemoczyć                                         |
| excessively                                            | nadmiernie                                                   |
| extract                                                | wydobyć                                                      |
| fertilizer                                             | nawóz                                                        |
| filter out                                             | odfiltrować                                                  |
| fractionate                                            | frakcjonować, dzielić na frakcje                             |
| gravel                                                 | żwir                                                         |
| human sewage                                           | ścieki bytowe                                                |
| hydrocarbon                                            | węglowodór                                                   |
| impermeable                                            | nieprzenikalny, nieprzepuszczalny                            |
| infiltrate                                             | przenikać                                                    |
| layer                                                  | warstwa                                                      |
| 164 1                                                  |                                                              |

#### 16.3.2. New terms and expressions

| meteoric water                                                        | woda z opadów                                                                                                               |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| MTBE methyl tert-butyl ether                                          | eter tert-butylometylowy                                                                                                    |
| nitrate                                                               | azotan                                                                                                                      |
| organic matter                                                        | materia organiczna                                                                                                          |
| percolate                                                             | przesączać się, przenikać                                                                                                   |
| petroleum products                                                    | ropopochodne                                                                                                                |
| pore                                                                  | por (niewielki otwór)                                                                                                       |
| porous                                                                | porowaty                                                                                                                    |
| precipitation                                                         | opad (atmosferyczny)                                                                                                        |
| pure                                                                  | czysta                                                                                                                      |
| purification                                                          | oczyszczanie                                                                                                                |
| raise (be of) concern                                                 | budzić obawy                                                                                                                |
| range                                                                 | zakres                                                                                                                      |
| raw                                                                   | surowy, nieoczyszczony                                                                                                      |
| recharge zone                                                         | strefa zasilania                                                                                                            |
| residence time                                                        | czas przebywania                                                                                                            |
| rock                                                                  | skała                                                                                                                       |
| aand                                                                  |                                                                                                                             |
| sand                                                                  | piasek                                                                                                                      |
| sand<br>sandstone                                                     | piasek<br>piaskowiec                                                                                                        |
|                                                                       |                                                                                                                             |
| sandstone                                                             | piaskowiec                                                                                                                  |
| sandstone<br>saturated zone                                           | piaskowiec<br>warstwa nasycona                                                                                              |
| sandstone<br>saturated zone<br>septic tank                            | piaskowiec<br>warstwa nasycona<br>szambo                                                                                    |
| sandstone<br>saturated zone<br>septic tank<br>ultimate                | piaskowiec<br>warstwa nasycona<br>szambo<br>ostateczny                                                                      |
| sandstone<br>saturated zone<br>septic tank<br>ultimate<br>underground | <ul> <li>piaskowiec</li> <li>warstwa nasycona</li> <li>szambo</li> <li>ostateczny</li> <li>pod ziemią, podziemny</li> </ul> |

# 16.3.3. Exercises

| 1. Match corresponding phrases.          |                                    |  |
|------------------------------------------|------------------------------------|--|
| age of groundwater                       | area above the aquifer             |  |
| aquifer                                  | from a few to millions of<br>years |  |
| chlorinated solvent                      | major groundwater contaminant      |  |
| location of groundwater                  | pump-and-treat                     |  |
| meteoric waters                          | sand, gravel                       |  |
| nitrate                                  | snow and rain                      |  |
| porous rock                              | source of nitrogen in groundwater  |  |
| recharge zone                            | trichloroethene                    |  |
| septic tank                              | underground                        |  |
| system of groundwater<br>decontamination | underground reservoir              |  |
| utility for groundwater<br>extraction    | water well                         |  |

2. Which statements are true (T) and which are false (F).

| a. | Water wells are used for the decontamination of groundwater.                    | T/F   |
|----|---------------------------------------------------------------------------------|-------|
| b. | The ultimate source of groundwater is rain or snow.                             | T / F |
| c. | The bulk of global freshwater is located in rivers and lakes.                   | T/F   |
| d. | An aquifer may be defined as an underground reservoir.                          | T/F   |
| e. | Groundwater contains a high content of organic matter.                          | T / F |
| f. | The age of underground water is counted in billions of years.                   | T/F   |
| g. | Nitrogen fertilizers may be an effective source of nitrate ions in groundwater. | T / F |

#### **16.4. Wastewater treatment**

Wastewater treatment technology usually involves three general stages: (i) mechanical treatment (the primary stage), (ii) biological treatment (the secondary stage), and finally (iii) chemical (or advanced) treatment (the tertiary stage). The aim of the primary stage is to remove large particles and coarse suspended matter from the wastewater by means of sedimentation and filtration. The sewage sludge formed at this stage is removed before the next stages in the treatment.

This pre-purified water is then sent to the second stage of treatment – biological oxidation by microorganisms. Usually, this stage is conducted in an aerated bioreactor filled with activated sludge. Activated sludge is an aqueous suspension of living microorganisms that metabolize degradable matter. This metabolic activity leads to the conversion of most organic compounds to carbon dioxide, ammonia, nitrates, phosphates and other simple inorganic chemicals. This process is called mineralization. The biological oxidation in this second treatment stage reduces the Biochemical Oxygen Demand (BOD) parameter. Nitrification, occurring at this stage, converts organic nitrogen to nitrates.

In many cases, these two steps are sufficient and the treated water is discharged into the environment after dilution with natural water. Treated water may also be used as a water source for municipalities if an additional disinfection step is included before use.

Some types of wastewater require the tertiary stage of treatment. This process aims to remove specific substances depending on local circumstances, the nature of the wastewater and the final destination of the purified waters. This step may include: (i) further reduction of BOD, (ii) removal of dissolved organic chemicals by adsorption on activated carbon, (iii) removal of phosphates by reaction with calcium hydroxide, (iv) removal of heavy metals by the addition of hydroxides or sulphides and (v) removal of iron by aeration at a high pH. In very special cases the treatment may also involve the removal of excess inorganic ions. For example, ammonium ions are eliminated at high pH by adding lime, followed by bubbling air through the water.

## 16.4.1. Reading comprehension

- 1. What are the three general steps in wastewater treatment technology ?
- 2. What fraction of sewage is removed during the primary stage of treatment ?
- 3. What are the principles of activated sludge technology ?
- 4. What is activated sludge composed of ?
- 5. What are the final products of mineralization?
- 6. What water quality parameters are improved during biological treatment ?
- 7. Give examples of tertiary treatment technologies.

| <u>16.4.2.</u> | New | terms | and | expressions |
|----------------|-----|-------|-----|-------------|
|                |     |       |     |             |

| activated carbonwęgiel aktywnyactivated sludgeosad czynnyadsorptionadsorpcjaadvanced treatmentoczyszczenie pogłębioneaerate, aerationnapowietrzać, napowietrzanieammonia, ammonium ionamoniak, jon amonowybiological treatmentoczyszczanie biologicznebioreactorbioreaktorbubblingprzepuszczanie gazu przez ciecz, bulgotaniecarbon dioxidedwutlenek węglacircumstanceokoliczność, uwarunkowaniecoarsegruboziarnistyconductprowadzićconversionkonwersja, przemianadegradabledegradowalny, usuwalnydischargezrzucać, opróżniaćdissolverozpuszczańfiltrationfiltrowanieheavy metalsmetale ciężkiemechanical treatmentoczyszczanie mechaniczne |                       |                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------|
| adsorptionadsorpcjaadvanced treatmentoczyszczenie pogłębioneaerate, aerationnapowietrzać, napowietrzanieammonia, ammonium ionamoniak, jon amonowybiological treatmentoczyszczanie biologicznebioreactorbioreaktorbubblingprzepuszczanie gazu przez ciecz, bulgotaniecarbon dioxidedwutlenek węglacircumstanceokoliczność, uwarunkowanieconversionkonwersja, przemianadegradabledegradowalny, usuwalnydischargezrzucać, opróżniaćdissolverozpuszczaćfiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                                                                          | activated carbon      | węgiel aktywny                              |
| advanced treatmentoczyszczenie pogłębioneaerate, aerationnapowietrzać, napowietrzanieammonia, ammonium ionamoniak, jon amonowybiological treatmentoczyszczanie biologicznebioreactorbioreaktorbubblingprzepuszczanie gazu przez ciecz, bulgotaniecalcium hydroxidewodorotlenek wapniacarbon dioxidedwutlenek węglacircumstanceokoliczność, uwarunkowaniecoarsegruboziarnistyconductprowadzićconversionkonwersja, przemianadegradabledegradowalny, usuwalnydischargezrzucać, opróżniaćdisolverozpuszczaćfiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                      | activated sludge      | osad czynny                                 |
| aerate, aerationnapowietrzać, napowietrzanieammonia, ammonium ionamoniak, jon amonowybiological treatmentoczyszczanie biologicznebioreactorbioreaktorbubblingprzepuszczanie gazu przez ciecz, bulgotaniecalcium hydroxidewodorotlenek wapniacarbon dioxidedwutlenek węglacircumstanceokoliczność, uwarunkowaniecoarsegruboziarnistyconductprowadzićconversionkonwersja, przemianadegradabledegradowalny, usuwalnydestinationmiejsce przeznaczeniadischargezrzucać, opróżniaćdissolverozpuszczaćfiltrationfiltrowanie                                                                                                                        | adsorption            | adsorpcja                                   |
| ammonia, ammonium ionamoniak, jon amonowybiological treatmentoczyszczanie biologicznebioreactorbioreaktorbubblingprzepuszczanie gazu przez ciecz, bulgotaniecalcium hydroxidewodorotlenek wapniacarbon dioxidedwutlenek węglacircumstanceokoliczność, uwarunkowaniecoarsegruboziarnistyconductprowadzićconversionkonwersja, przemianadegradabledegradowalny, usuwalnydestinationmiejsce przeznaczeniadischargezrzucać, opróżniaćdissolverozpuszczaćfiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                                                                          | advanced treatment    | oczyszczenie pogłębione                     |
| biological treatmentoczyszczanie biologicznebioreactorbioreaktorbubblingprzepuszczanie gazu przez ciecz, bulgotaniecalcium hydroxidewodorotlenek wapniacarbon dioxidedwutlenek węglacircumstanceokoliczność, uwarunkowaniecoarsegruboziarnistyconductprowadzićconversionkonwersja, przemianadegradabledegradowalny, usuwalnydestinationmiejsce przeznaczeniadischargezrzucać, opróżniaćdisinfectiondezynfekcjafiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                                                                                                               | aerate, aeration      | napowietrzać, napowietrzanie                |
| bioreactorbioreaktorbubblingprzepuszczanie gazu przez ciecz, bulgotaniecalcium hydroxidewodorotlenek wapniacarbon dioxidedwutlenek węglacircumstanceokoliczność, uwarunkowaniecoarsegruboziarnistyconductprowadzićconversionkonwersja, przemianadegradabledegradowalny, usuwalnydestinationmiejsce przeznaczeniadisnfectiondezynfekcjadissolverozpuszczaćfiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                                                                                                                                                                    | ammonia, ammonium ion | amoniak, jon amonowy                        |
| bubblingprzepuszczanie gazu przez ciecz, bulgotaniecalcium hydroxidewodorotlenek wapniacarbon dioxidedwutlenek węglacircumstanceokoliczność, uwarunkowaniecoarsegruboziarnistyconductprowadzićconversionkonwersja, przemianadegradabledegradowalny, usuwalnydestinationmiejsce przeznaczeniadisnfectiondezynfekcjadissolverozpuszczaćfiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                                                                                                                                                                                        | biological treatment  | oczyszczanie biologiczne                    |
| calcium hydroxidewodorotlenek wapniacarbon dioxidedwutlenek węglacircumstanceokoliczność, uwarunkowaniecoarsegruboziarnistyconductprowadzićconversionkonwersja, przemianadegradabledegradowalny, usuwalnydestinationmiejsce przeznaczeniadischargezrzucać, opróżniaćdisinfectiondezynfekcjafiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                                                                                                                                                                                                                                  | bioreactor            | bioreaktor                                  |
| carbon dioxidedwutlenek węglacircumstanceokoliczność, uwarunkowaniecoarsegruboziarnistyconductprowadzićconversionkonwersja, przemianadegradabledegradowalny, usuwalnydestinationmiejsce przeznaczeniadischargezrzucać, opróżniaćdisinfectiondezynfekcjadissolverozpuszczaćfiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                                                                                                                                                                                                                                                   | bubbling              | przepuszczanie gazu przez ciecz, bulgotanie |
| circumstanceokoliczność, uwarunkowaniecoarsegruboziarnistyconductprowadzićconversionkonwersja, przemianadegradabledegradowalny, usuwalnydestinationmiejsce przeznaczeniadischargezrzucać, opróżniaćdisinfectiondezynfekcjadissolverozpuszczaćfiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                                                                                                                                                                                                                                                                                | calcium hydroxide     | wodorotlenek wapnia                         |
| coarsegruboziarnistyconductprowadzićconversionkonwersja, przemianadegradabledegradowalny, usuwalnydestinationmiejsce przeznaczeniadischargezrzucać, opróżniaćdisinfectiondezynfekcjadissolverozpuszczaćfiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                                                                                                                                                                                                                                                                                                                      | carbon dioxide        | dwutlenek węgla                             |
| conductprowadzićconversionkonwersja, przemianadegradabledegradowalny, usuwalnydestinationmiejsce przeznaczeniadischargezrzucać, opróżniaćdisinfectiondezynfekcjadissolverozpuszczaćfiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                                                                                                                                                                                                                                                                                                                                          | circumstance          | okoliczność, uwarunkowanie                  |
| conversionkonwersja, przemianadegradabledegradowalny, usuwalnydestinationmiejsce przeznaczeniadischargezrzucać, opróżniaćdisinfectiondezynfekcjadissolverozpuszczaćfiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                                                                                                                                                                                                                                                                                                                                                          | coarse                | gruboziarnisty                              |
| degradabledegradowalny, usuwalnydestinationmiejsce przeznaczeniadischargezrzucać, opróżniaćdisinfectiondezynfekcjadissolverozpuszczaćfiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                                                                                                                                                                                                                                                                                                                                                                                        | conduct               | prowadzić                                   |
| destinationmiejsce przeznaczeniadischargezrzucać, opróżniaćdisinfectiondezynfekcjadissolverozpuszczaćfiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | conversion            | konwersja, przemiana                        |
| dischargezrzucać, opróżniaćdisinfectiondezynfekcjadissolverozpuszczaćfiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | degradable            | degradowalny, usuwalny                      |
| disinfectiondezynfekcjadissolverozpuszczaćfiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | destination           | miejsce przeznaczenia                       |
| dissolverozpuszczaćfiltrationfiltrowanieheavy metalsmetale ciężkie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | discharge             | zrzucać, opróżniać                          |
| filtration     filtrowanie       heavy metals     metale ciężkie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | disinfection          | dezynfekcja                                 |
| heavy metals metale ciężkie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dissolve              | rozpuszczać                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | filtration            | filtrowanie                                 |
| mechanical treatment oczyszczanie mechaniczne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | heavy metals          | metale ciężkie                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mechanical treatment  | oczyszczanie mechaniczne                    |

| metabolic, metabolize      | metaboliczny, metabolizować         |
|----------------------------|-------------------------------------|
| microorganism              | mikroorganizm                       |
| mineralization             | mineralizacja                       |
| municipality               | miasto, gmina miejska               |
| nitrate                    | azotan                              |
| nitrification              | nitryfikacja                        |
| organic nitrogen           | organiczne związki azotu            |
| oxidation                  | utlenianie                          |
| particle                   | cząstka                             |
| phosphate                  | fosforan                            |
| pre-purified               | wstępnie oczyszczony                |
| primary                    | pierwszego stopnia, pierwszorzędowy |
| remove                     | usunąć                              |
| secondary                  | drugiego stopnia, drugorzędowy      |
| sedimentation              | osadzanie, sedymentacja             |
| sewage sludge              | osad ściekowy                       |
| subsequently               | w następnej kolejności              |
| sulphide                   | siarczek                            |
| suspend, suspension        | zawiesić, zawiesina                 |
| tank                       | zbiornik                            |
| technology                 | technologia, technika               |
| tertiary                   | trzeciego stopnia, trzeciorzędowy   |
| wastewater                 | ścieki                              |
| wastewater treatment       | oczyszczanie ścieków                |
| wastewater treatment plant | oczyszczalnia ścieków               |

## 16.4.3. Exercises

#### 1. Fill in the blanks

The processing of wastewater starts with ...... treatment, followed by ..... oxidation. During the primary stage larger ...... and ..... are removed. Secondary treatment is usually based on ...... sludge technology. This process exploits the metabolic activity of living

2. Classify the following processes as the primary, secondary or tertiary stage of wastewater treatment.

| Process                        | Stage of treatment |
|--------------------------------|--------------------|
| removal of heavy metals        |                    |
| reduction of BOD               |                    |
| adsorption on activated carbon |                    |
| nitrification                  |                    |
| filtration                     |                    |
| biological oxidation           |                    |
| conversion to carbon dioxide   |                    |
| aeration at high pH            |                    |
| suspension removal             |                    |
| addition of sulphates          |                    |
| removal of large particles     |                    |

# 17. Toxic Chemicals and their Effects

### 17.1. Pesticides

Pesticides are substances that control the growth of unwanted organisms, such as insects, fungi or plants. The names for these particular examples would be: insecticides, fungicides and herbicides. There are many other types of pesticides, including bactericides to control bacteria and algicides used against algae.

The industrial production of pesticides started in the 1940s, focusing mainly on organochlorine compounds. Many organochlorines have several properties in common, such as high stability, low solubility in water, high solubility in fats and other hydrocarbon-like environments, and a relatively high toxicity towards insects. Most of these pesticides are no longer in use, however, since their adverse effects on many environmental compartments as well as on human health have been amply demonstrated. Typical examples of organochlorines DDT are (pdichlorodiphenyltrichloroethane), hexachlorobenzene, mirex, dieldrin, aldrin or endosulphan. All of them are nowadays classified as persistent organic pollutants (POPs) and some of them are members of the 'dirty dozen', the group of 12 POPs listed by the United Nations Environmental Programme as being banned by international agreements. These compounds are not only hazardous in their native form - their various metabolites are as well. A very well-known biologically active metabolite of organochlorine is DDE (dichlorodiphenyldichloroethane), a metabolite of DDT. It was found that in some birds DDE interferes with the enzyme responsible for the distribution of calcium, so contaminated birds produced eggs with shells too thin to withstand the weight of the brooding parents.

Many organochlorine compounds can be bioaccumulated, especially by aquatic organisms. For example, when contaminated water passes through a fish's gills, these compounds selectively diffuse from the water into fish's fatty flesh and become more concentrated there. The level to which a chemical is bioconcentrated in a particular organism is given by the bioconcentration factor BCF. Its value can be predicted from a simple comparison with the octanol – water partition coefficient of the chemical. In general, the higher the octanol – water partition coefficient, the more likely the chemical is to be bound to the fatty tissue of the living organism.

Organophosphorus insecticides are a non-chlorine alternative to the organochlorines. These compounds are generally non-persistent and non-bioaccumulative since they decompose in the environment within a few days or weeks. However, they have been shown to be much more acutely toxic to humans than organochlorines were. Typical examples of these insecticides are dichlorvos, parathion, diazinon or malathion. Their insecticidal potency results from the inhibition of acetylcholinesterase – an enzyme in the nervous system responsible for destroying the acetylcholine molecule, which transfers a signal from one cell to another.

## 17.1.1. Reading comprehension

- 1. What are the main types of pesticides?
- 2. Why are organochlorine pesticides not in use anymore?
- 3. What are POPs?
- 4. Why do organochlorine pesticides bioaccumulate in living systems?
- 7. What chlorine-free alternatives of pesticides are there?
- 8. What is the toxicological mode of action of organophosphorus pesticides?

| 'dirty dozen'                  | parszywa dwunastka             |
|--------------------------------|--------------------------------|
| acetylcholine                  | acetylocholina                 |
| acetylcholinesterase           | acetylocholinoesteraza         |
| acutely toxic                  | ostro toksyczny                |
| adverse                        | niekorzystny                   |
| aldrin                         | aldryna                        |
| algicide                       | algicyd                        |
| bactericide                    | bacteriocyd                    |
| banned                         | zabroniony                     |
| bioaccumulation                | bioakumulacja                  |
| bioconcentration factor        | współczynnik biokoncentracji   |
| contaminated                   | skażony                        |
| dangerous                      | niebezpieczny                  |
| diazinon                       | diazinon                       |
| dichlorodiphenyldichloroethane | dichlororodifenylodichloroetan |

## 17.1.2. New terms and expressions

| dichlorvos                                | dichlorofos                        |
|-------------------------------------------|------------------------------------|
| dieldrin                                  | dieldryna                          |
| endosulphan                               | endosulphan                        |
| environmental compartment                 | element środowiska                 |
| fungi                                     | grzyby                             |
| fungicide                                 | fungicyd                           |
| hazardous                                 | niebezpiecznie szkodliwy           |
| herbicide                                 | herbicyd                           |
| hexachlorobenzene                         | heksachlorobenzen                  |
| hydrocarbon-like                          | węglowodoropodobne                 |
| insect                                    | owad                               |
| insecticide                               | insektycyd                         |
| international agreement                   | umowa międzynarodowa               |
| malathion                                 | malation                           |
| metabolite                                | metabolit                          |
| mirex                                     | mireks                             |
| native form                               | forma pierwotna                    |
| nervous system                            | układ nerwowy                      |
| non-bioaccumulative                       | nie bioakumulujący się             |
| organochlorinated                         | chlorowcoorganiczny                |
| organochlorines                           | związki chlorowcoorganiczne        |
| organophosphorus compounds                | związki fosfoorganiczne            |
| parathion                                 | paration                           |
| partition coefficient                     | współczynnik podziału              |
| p-dichlorodiphenyltrichloroethane         | p-dichlorodifenylotrichloroetan    |
| persistent organic pollutants (POPs)      | trwałe zanieczyszczenia organiczne |
| plant                                     | roślina                            |
| shell                                     | skorupa                            |
| toxicity                                  | toksyczność                        |
| United Nations Environmental<br>Programme | Program Ochrony Środowiska ONZ     |
| withstand                                 | wytrzymać                          |

# 17.1.3. Exercises

| 12 chemicals banned by<br>international agreements       | adverse effects to health and the environment |
|----------------------------------------------------------|-----------------------------------------------|
| DDT                                                      | bioaccumulation                               |
| dichlorodiphenyldichloroethane                           | dirty dozen                                   |
| inhibition of acetylcholinesterase                       | the nineteenforties                           |
| organophosphate insecticides                             | high stability, low solubility in water       |
| persistent organic pollutants                            | insecticidal potency of organophosphates      |
| pesticides                                               | DDT metabolite                                |
| potential for buildup in fatty tissues                   | non-chlorine alternative pesticides           |
| properties of organochlorines                            | p-dichlorodiphenyltrichloroethane             |
| reasons for banning<br>organochlorines                   | POPs                                          |
| the starting date of industrial production of pesticides | substances that control growth of pests       |

2. Indicate which statements are true (T) and which are false (F).

| a. | Pesticides are substances that control the growth of insects only.                                      | T / F |
|----|---------------------------------------------------------------------------------------------------------|-------|
| b. | Organochlorine compounds were the first pesticides to be produced on an industrial scale.               | T/F   |
| c. | DDT is a typical example of an organochlorine compound.                                                 | T / F |
| d. | The 'dirty dozen' is a list of all the pesticides produced before 1956.                                 | T / F |
| e. | Thinning of bird eggshells is caused by DDE, a metabolite of DDT.                                       | T / F |
| f. | Organophosphorus compounds consist of phosphorus, carbon and chlorine atoms.                            | T/F   |
| g. | Organophosphorus compounds owe their insecticidal properties to the inhibition of acetylcholinesterase. | T/F   |
| h. | Organochlorines are more acutely toxic to humans than organophosphorus compounds.                       | T/F   |

### **17.2. Non-pesticide organic contaminants**

The widespread production and use of organic chemicals has led to their presence in the environment, which in many cases is permanent and persistent. Non-pesticide organic contaminants include several types of chemicals of the highest environmental concern: polychlorinated dibenzodioxins and dibenzofurans (the so-called dioxins), polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs).

Dioxins are formed during the production of tetrachlorophenol in one of the side reactions. Moreover, polychlorinated dibenzodioxins and dibenzofurans are by-products of the following processes: pulp bleaching in the paper industry, the incineration of municipal and industrial waste, the recycling of metals or the production of chlorinated solvents. In total there are 75 different dibenzodioxins containing one to eight chlorine atoms substituted at various positions of both aromatic rings. They are congeners, that is, members of a chemical family that differ only in the number and position of the same substituents.

PCBs are a group of industrial chemicals characterized by many attractive properties such as non-flammability, low vapour pressure, inertness, low cost and excellent electrical insulation properties. Therefore, for years they were extensively used as coolant fluids in power transformers, as plasticizers in PVC production, as de-inking solvents in recycling, as heat transfer fluids for machinery and in many more applications. Like many other organochlorine compounds, they are persistent in the environment and bioaccumulate in living systems. Both PCBs and dioxins are listed in the 'dirty dozen' list, not only because they are toxic in their own right, but also because they can also have their mutagenic and sometimes even carcinogenic properties.

PAHs are common air pollutants that enter the environment from a number of sources, including the exhaust of petrol engines, volcanic eruptions, and the combustion of fossil fuels where conversion to CO or  $CO_2$  is incomplete. PAHs are also present in cigarette smoke and in charred or burnt food. They consist of several aromatic, benzene-like rings fused together by the sharing of a pair of adjacent carbon atoms. Although PAHs make up only about 0.1% of airborne particulate

matter, their existence as air pollutants is of concern since many of them are carcinogenic. Benzo(a)pyrene is the most notorious and common carcinogenic PAH.

## 17.2.1. Reading comprehension

- 1. What are the main types of non-pesticide persistent organic pollutants?
- 2. What are the main sources of dioxins in the environment?
- 3. What are congeners?
- 4. What properties of PCBs made them attractive to industry?
- 5. What were the main industrial applications of PCBs?
- 6. What are the main sources of PAHs in the environment?
- 7. What feature of PAHs makes them hazardous to man and the environment?

| adjacent                                       | sąsiadujący                       |
|------------------------------------------------|-----------------------------------|
| air pollutants                                 | zanieczyszczenia powietrza        |
| airborne particulate matter                    | pył zawieszony                    |
| benzo(a)pyrene                                 | benzo(a)piren                     |
| bleaching                                      | wybielanie                        |
| burnt (also 'burned')                          | spalony                           |
| by-products                                    | produkty uboczne                  |
| carcinogenic                                   | kancerogenny                      |
| charred                                        | zwęglony                          |
| chlorinated solvents                           | rozpuszczalniki chloro-organiczne |
| combustion                                     | spalanie                          |
| concern (in the expression 'to be of concern') | problem, sprawa, zmartwienie      |
| congeners                                      | kongenery                         |
| coolant fluid                                  | płyn chłodzący                    |
| de-inking solvent                              | rozpuszczalnik odbarwiający       |
| engine                                         | silnik                            |
| exhaust                                        | wydech                            |
| extensively                                    | dokładnie, wyczerpująco, szeroko  |
| fossil fuels                                   | paliwa kopalne                    |
| heat transfer                                  | przenoszenie ciepła               |
|                                                |                                   |

## 17.2.2. New terms and expressions

| incineration                       | spalanie                                           |
|------------------------------------|----------------------------------------------------|
| incomplete                         | niepełny                                           |
| insulation                         | izolacja, izolacyjny                               |
| municipal                          | komunalny                                          |
| mutagenic                          | mutagenny                                          |
| non-flammability                   | niepalność                                         |
| non-pesticide organic contaminants | zanieczyszczenia organiczne nie będące pestycydami |
| non-reactivity                     | niereaktywność                                     |
| notorious                          | uciążliwy                                          |
| permanent                          | trwający, permanentny                              |
| persistent                         | trwały, uciążliwy                                  |
| petrol (US gasoline)               | benzyna                                            |
| plasticizer                        | plastyfikator                                      |
| polyaromatic hydrocarbons (PAHs)   | wielopierścieniowe węglowodory<br>aromatyczne      |
| polychlorinated biphenyls (PCBs)   | polichlorowane bifenyle                            |
| polychlorinated dibenzodioxins     | polichlorowane dibenzodioksyny                     |
| polychlorinated dibenzofurans      | polichlorowane dibenzofurany                       |
| (power) transformer                | transformator                                      |
| pulp                               | pulpa papiernicza, breja                           |
| substituent                        | podstawnik                                         |
| tetrachlorophenol                  | tetrachlorofenol                                   |
| volcanic eruption                  | wybuch wulkanu                                     |
| widespread                         | rozpowszechniony                                   |

## 17.2.3. Exercises

## 1. Fill in the blanks

Among the non-pesticide organic contaminants, those of the greatest environmental concern are ....., ...., and ...... Dioxins are formed mainly during the manufacture of ....., but they are also produced during the ...... of municipal and industrial waste. The 75 isomers of dioxins differing

- 2. Questions and problems.
- a. Give the common physicochemical properties of non-pesticide organic contaminants.
- b. Explain how bleaching can lead to the formation of dioxins.
- c. Give three examples of non-pesticide organic contaminants other than dioxins, PCBs and PAHs.
- d. How one can limit the emission of non-pesticide organic contaminants to the environment?

## 17.3. Heavy metals

Heavy metals are metallic elements with relatively high atomic numbers. Their densities are high compared to those of other common materials. Some heavy metals are considered extremely troublesome and toxic pollutants, particularly mercury, lead, cadmium, chromium and arsenic.

Cadmium is widely used in metal plating as well as in making small batteries. Cadmium is very toxic, destroying red blood cells and damaging kidney tissue. Lead is the most common heavy metal pollutant because of its widespread use in industry. Metallic lead is used in the manufacture of car batteries and in plumbing, and lead compounds used to be used as anticorrosive pigments in paints and as petrol additives. Exposure to lead adversely affects the neurological and reproductive system.

Mercury is employed in hundreds of applications, many of which utilize its unusual property of being a liquid metal at room temperature. Mercury or its compounds are used in electrical switches, fluorescent and mercury lamps, batteries and thermometers. When entering the environment mercury may undergo alkylation to give methylmercury and dimethylmercury, both very toxic organometallic compounds. The so-called Minamata Bay incident has been the worst case of poisoning from methylated forms of mercury in recent times. The water in Minamata Bay, Japan, was polluted by the drainage of mercury-containing wastes from a chemical plant, which in turn led to poisoning in the local people as a result of their consuming fish and seafood from the bay.

Arsenic is a metalloid (on the borderline between metals and non-metals in the periodic table), but its environmental and toxicological effects are much like those of heavy metals. Arsenic(III) oxide has been the poison of choice for murder and suicide since ancient times. Before the introduction of modern pesticides, large quantities of arsenic compounds were used to control pests on crops. Today, arsenic is one of the most serious environmental health hazards, being found in natural waters and drinking water at relatively high concentrations. Arsenic is carcinogenic to humans, and also causes cardiovascular diseases and disrupts hormonal processes.

Chromium is widely used for electroplating, corrosion protection and leather tanning. As a consequence of industrial emissions chromium is a common water pollutant. The toxicity of chromium depends on its oxidation state. Hexavalent chromium is highly toxic and chromate(VI) ions – a suspected carcinogen – readily enter cells, where they can oxidize nucleic acid bases. Trivalent chromium is considered much less harmful, even functioning as a trace nutrient.

## 17.3.1. Reading comprehension

- 1. What are heavy metals?
- 2. Which heavy metals are particularly dangerous to the environment?
- 3. What are the main fields of application of cadmium and lead?
- 4. What are the main products of the alkylation of mercury?
- 5. What happened in Minamata Bay?
- 6. Why is arsenic considered to be one of the most serious environmental health hazards?
- 7. Does the oxidation state of chromium affect its toxicity?

17.3.2. New terms and expressions

| abnormal                   | nienormalny                                        |
|----------------------------|----------------------------------------------------|
| additive                   | dodatek                                            |
| alkylation                 | alkilowanie                                        |
| ancient                    | antyczny                                           |
| anticorrosive              | przeciwkorozyjny                                   |
| aqueduct                   | akwedukt                                           |
| arsenic                    | arsen                                              |
| arsenic(III) oxide         | tlenek arsenu(III)                                 |
| bay                        | zatoka                                             |
| cadmium                    | kadm                                               |
| cardiovascular disease     | choroba sercowo-naczyniowa                         |
| channel                    | kanał                                              |
| chemical plant             | zakłady chemiczne                                  |
| chromate(VI)               | chromian(VI)                                       |
| chromium                   | chrom                                              |
| corrosion protection       | zabezpieczenia przeciwkorozyjne                    |
| crop                       | uprawa, plon                                       |
| dimethylmercury            | dimetylortęć                                       |
| disrupt hormonal processes | zakłócić procesy hormonalne                        |
| drainage                   | zlewanie, ściekanie, zrzucanie                     |
| electroplating             | elektrogalwanizacja                                |
| exposure                   | narażenie                                          |
| felt                       | filc                                               |
| hatter                     | rzemieślnik wyrabiający kapelusze<br>(kapelusznik) |
| heavy metals               | metale ciężkie                                     |
| hexavalent                 | sześciowartościowy                                 |
| kidney                     | nerka                                              |
| knead                      | ugniatać, miętosić                                 |
| lead                       | ołów                                               |
| leather tanning            | garbowanie skóry                                   |
| line                       | wyłożyć, wysłać, pokryć                            |
| manufacture                | produkować                                         |
| mercury                  | rtęć                          |
|--------------------------|-------------------------------|
| metalloid                | półmetal                      |
| methylmercury            | metylortęć                    |
| monastery                | klasztor                      |
| monk                     | mnich                         |
| murder                   | morderstwo                    |
| neurological             | neurologiczny                 |
| nickname                 | przezwać, przezwisko          |
| nucleic acid bases       | zasady nukleinowe             |
| organometallic compounds | związki metaloorganiczne      |
| oxidation state          | stopień utlenienia            |
| pests                    | szkodnik                      |
| plating                  | galwanizacja                  |
| plumbing                 | przyłącza hydrauliczne        |
| poison                   | trucizna                      |
| red blood cells          | czerwone ciałka krwi          |
| reproductive             | rozrodczy                     |
| seafood                  | żywność pochodzenia morskiego |
| suicide                  | samobójstwo                   |
| switch                   | przełącznik                   |
| tanning                  | garbowanie                    |
| trivalent                | trójwartościowy               |
| troublesome              | problematyczny                |
| tub                      | balia, wanna                  |
| wastes                   | odpady                        |
| wine                     | wino                          |

# 17.3.3. Exercises

1. Complete the table showing the adverse effects and typical applications of heavy metals.

| Heavy metal | Adverse effect                        | Typical application |
|-------------|---------------------------------------|---------------------|
| Cadmium     | very toxic, destroys red blood cells, | metal plating,      |
| Lead        |                                       |                     |
| Mercury     |                                       |                     |
| Arsenic     |                                       |                     |
| Chromium    |                                       |                     |

- 2. Problems and questions.
- a. Mercury(II) nitrate used to be utilized as a tanning agent in the manufacture of hats in the 19<sup>th</sup> century. To obtain felt, a fashionable material for men's and women's hats, workers kneaded rabbit skins in mercury nitrate solution contained in large, open tubs. What do you think is the origin of the saying 'to be as mad as a hatter', which comes from those times?
- b. The ancient Romans drank water carried to Rome from distant places along aqueducts. These water-carrying channels were lined with lead. Could this have had an effect on people's health?

c. Lead(II) acetate is sweet to taste; it even used to be known as 'lead sugar'. The bones of monks who lived in a certain German monastery in the fifteenth century show an abnormally high content of lead. At that time the monastery was famous for its delicious, sweet wine. Given this information, can you give a possible cause of death of the monks?

#### 17.4. Principles of toxicology

Ultimately, most pollutants and hazardous substances are of concern because of their toxicity. The study of the harmful effects of these substances on living organisms is called toxicology. The substances of interest (toxicants) include both synthetic compounds and those that exist naturally in the environment.

In toxicology, the adverse effects are determined by injecting test organisms with the toxicant and observing how their health is affected. Test organisms may be animals but also specific eukaryotic cell lines or bacterial cells. With these tests, acute toxicity can be determined, which is the rapid onset of symptoms including the death of the test organism following the intake of a dose of the toxicant. In order to understand the long-term effects of toxicants, a much better reflection of environmental conditions, it is preferable to measure chronic (long-term, continuous) toxicity. This is determined at relatively low individual doses of a toxic substance that is present in the environment of the exposed organism (food, water, air).

Furthermore, chemical interactions between toxicants may affect their biological properties. When two different substances have the same physiological impact, their effects may be additive or synergistic. Synergy means that the total effect is greater than the sum of the separate effects. Additionally, potentiation may occur when an inactive substance enhances the action of an active one. Conversely, there is also antagonism, when an active toxicant decreases the toxicity of another active one.

The most common way of illustrating the effect of varying concentrations on the test organism is the dose-response curve. The dose of the chemical is plotted on the x axis and the measured effect (death, growth inhibition) is shown on the y axis. The dose that proves to be lethal to 50% of the population is called the lethal dose  $(LD_{50})$  value of the substance. The range of  $LD_{50}$  values for the acute toxicity of various chemicals is enormous. Highly toxic substances such as tetanus or botulism toxins have an  $LD_{50}$  at the level of  $10^{-8}$  g per kg of body weight. The  $LD_{50}$  values of organophosphorus pesticides such as parathion are at the level of  $10^{-3}$  g kg<sup>-1</sup> and those of DDT are around  $10^{-1}$  g kg<sup>-1</sup>. Substances with  $LD_{50}$  values of many grams per kg of body weight (e.g. sugar) are classified as practically non-toxic, though according to Paracelsus, all substances are toxic in sufficiently high doses. For some

toxicants there is a certain dose below which none of the test organisms are affected. This dose is called the 'no observable effects level (NOEL)'. For chronic exposure, the NOEL dose is normally expressed in milligrams of toxicant per kilogram of body weight per day.

# 17.4.1. Reading comprehension

- 1. What is the most general definition of toxicology?
- 2. How are the adverse effects of toxicants usually determined? What test systems are used?
- 3. What is the difference between acute and chronic toxicity?
- 4. How may the effects of varying the dose to the organism be illustrated?
- 5. What do  $LD_{50}$  and NOEL stand for?
- 6. Name the strongest and weakest toxicants mentioned in the text.

### 17.4.2. New terms and expressions

| acute toxicity        | toksyczność ostra             |
|-----------------------|-------------------------------|
| additive              | sumujący się                  |
| affect                | wpływa                        |
| antagonism            | antagonizm                    |
| bacterial             | bakteryjny                    |
| botulism              | jad kiełbasiany               |
| chronic toxicity      | toksyczność chroniczna        |
| dose                  | dawka                         |
| dose – response curve | krzywa dawka – efekt          |
| enhance               | wzmagać                       |
| enormous              | ogromny                       |
| eukaryotic cell lines | linie komórek eukariotycznych |
| growth inhibition     | zahamowanie wzrostu           |
| harmful               | szkodliwy                     |
| hazardous substance   | substancja niebezpieczna      |
| injecting             | wprowadzanie (przez zastrzyk) |
| lethal                | śmiertelny                    |

| no observable effects level (NOEL) | najniższy poziom (dawki, stężenia) przy<br>którym nie obserwuje się szkodliwych zmian |
|------------------------------------|---------------------------------------------------------------------------------------|
| onset                              | rozpoczęcie                                                                           |
| pollutant                          | zanieczyszczenie                                                                      |
| potentiation                       | potencjacja, wzmaganie                                                                |
| synergistic                        | synergiczny                                                                           |
| synthetic                          | syntetyczny                                                                           |
| tetanus                            | tężec                                                                                 |
| toxicants                          | substancja toksyczna, toksykant                                                       |
| toxicology                         | toksykologia                                                                          |
| ultimately                         | w ostateczności                                                                       |
| x axis, y axis                     | OŚ X, OŚ Y                                                                            |

# 17.4.3. Exercises

- The figure shows a typical dose response curve. Complete the graph with appropriate labels.
- Dose (g kg<sup>-1</sup>)
- Death (%)
- LD<sub>50</sub>
- NOEL



2. Match the corresponding phrases.

| botulin                                                                             | An active toxicant decreases the toxicity of another one                    |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| chronic toxicity                                                                    | acute toxicity                                                              |
| concentration of toxicant causing death                                             | animals or cell lines                                                       |
| dose                                                                                | antagonism                                                                  |
| dose-response curve                                                                 | concentration of toxicant                                                   |
| highly toxic substance                                                              | effects after longer exposure                                               |
| immediate adverse effect                                                            | graphic expression of toxic effects                                         |
|                                                                                     |                                                                             |
| lethal dose                                                                         | LD <sub>50</sub>                                                            |
| lethal dose<br>dose lethal to 50% of the<br>population                              | $LD_{50}$<br>no observable effects level                                    |
| dose lethal to 50% of the                                                           |                                                                             |
| dose lethal to 50% of the population                                                | no observable effects level                                                 |
| dose lethal to 50% of the population<br>NOEL<br>the study of the harmful effects of | no observable effects level<br>synergy<br>total effect greater than the sum |

# 18. Waste Management

### 18.1. Disposal of waste in landfills

Nowadays, one of the most common ways of handling municipal solid waste (MSW) is its disposal in a landfill. In the past, landfills were frequently large holes in the ground, usually left after the extraction of clay, sand or gravel. Modern municipal landfills are designed in a much more sophisticated way. They often accept no hazardous waste and are located in places where their impact on the environment is minimal. Municipal solid waste is compacted in layers in order to reduce its overall volume. The daily layer of disposed waste is covered with a layer of soil to prevent its remobilization. After being filled, the landfill is eventually capped with a layer of clay or a plastic membrane.

There are two critical elements of a secure landfill construction: a bottom liner and a leachate collection system. The bottom liner is impermeable to fluids. It is made of one or more layers of clay or a synthetic flexible membrane. The leachate collection system captures contaminated water and other fluids at the bottom of the landfill. Biogas is produced as a result of the anaerobic biodegradation of dumped organic material. It is usually collected and flared off or used to generate electricity in a gas fired power plant. The scheme below presents a typical landfill design:



# 18.1.1. Reading comprehension

- 1. What is the usual way of disposing of MSW nowadays?
- 2. What are the main steps of daily waste disposal at a landfill?
- 3. What happens after the landfill has been filled?
- 4. How are leachates from the landfill prevented from entering the soil?
- 5. What type of materials are typically used for the liner?
- 6. How can the biogas produced in a landfill be utilized?

| anaerobic biodegradation   | rozkład beztlenowy                 |
|----------------------------|------------------------------------|
| сар                        | zakryć                             |
| clay                       | glina, ił                          |
| compact                    | ugnieść                            |
| disposal                   | składowanie                        |
| flare off                  | wypalić                            |
| flexible                   | giętki, elastyczny                 |
| gas fired power plant      | elektrownia zasilana gazem         |
| gravel                     | żwir                               |
| hazardous waste            | odpady niebezpieczne               |
| impermeable                | nieprzepuszczalny                  |
| landfill                   | składowisko odpadów                |
| leachate                   | odciek, wysięk                     |
| leachate collection system | system drenażowy usuwania odcieków |
| liner                      | membrana izolacyjna                |
| municipal solid waste      | odpady komunalne (stałe)           |
| nowadays                   | obecnie, współcześnie              |
| remobilization             | wtórne uwolnienie, remobilizacja   |
| sand                       | piasek                             |
| sophisticated              | wyrafinowany                       |
| synthetic                  | syntetyczny, sztuczny              |

# 18.1.2. New terms and expressions

#### 18.1.3. Exercises

- 1. Indicate which statements are true (T) and which are false (F).
- a. Landfills are the most common way of handling MSW in Poland today. T / F
- b. Modern landfills must be isolated from the ground by a layer of clay. T / F
- c. Biogas is produced only in landfills where hazardous waste is dumped. T / F
- d. The leachate collection system improves groundwater quality in the T / F neighbourhood of a landfill.
- e. After being filled, the landfill should be capped with a plastic membrane or T / F a layer of clay.
- f. The main components of the biogas produced in a landfill are propane T / F and butane.
- g. The daily layer of dumped waste is densely compacted to reduce T / F emissions of odour.
- 2. Complete the glossary below:

| Term                       | Explanation                                                                                          |
|----------------------------|------------------------------------------------------------------------------------------------------|
| landfill                   | An engineered site where waste is collected with minimal impact on human health and the environment. |
| municipal solid waste      |                                                                                                      |
| bottom liner               |                                                                                                      |
| biogas                     |                                                                                                      |
| leachate collection system |                                                                                                      |

#### 18.2. Incineration of garbage

After landfilling, incineration is the second common way of handling waste. Incineration means the oxidation of waste materials to simple mineral products such as carbon dioxide and water by burning under controlled conditions. The combustible components of garbage such as paper, plastics and wood provide fuel for the process. There are three general types of incineration plant burning municipal solid waste: moving grate, fixed grate, or fluidized bed incinerator.

Municipal incinerators produce energy, exhaust gases and a solid residue that amounts to about one-third of the initial weight of the waste. Bottom ash is the noncombustible material that collects at the bottom of the incinerator. This material must be deposited in a hazardous waste landfill or further processed in order to reduce the risk of concentrated contaminants (mainly heavy metals) being leached into the soil. This is usually achieved by the addition of adhesives or by vitrification. Fly ash is finely divided solid matter (10-15% of the total ash mass) that is transported with the exhaust gases. Fly ash is usually very toxic, since heavy metals, dioxins and furans readily condense onto small particles. Therefore, prevention of air pollution presents a great challenge and is crucially important in incineration. Typically, baghouse filters made from woven fabric and/or gas scrubbers are used for filtering out fly ash particles.

#### 18.2.1. Reading comprehension

- 1. What is incineration?
- 2. What are the final gas products of incineration?
- 3. What are the types of solid residues produced during incineration?
- 4. What technological processes can be applied to reduce the risk of leachates from the bottom ash entering the soil?
- 5. Why can fly ash be a dangerous air pollutant?
- 6. Name some typical devices used for filtering the incinerator exhaust?

# 18.2.2. New terms and expressions

| adhesive                 | spoiwo                                 |
|--------------------------|----------------------------------------|
| aggregation              | zlepianie, agregacja                   |
| baghouse filter          | filtr workowy                          |
| bottom ash               | popioły i żużle paleniskowe            |
| burning                  | spalanie                               |
| carbon dioxide           | dwutlenek węgla                        |
| challenge                | wyzwanie                               |
| combustible              | palny                                  |
| condense                 | kondensować                            |
| contaminant              | substancja skażająca                   |
| device                   | urządzenie                             |
| exhaust                  | wydech, wylot (gazów)                  |
| fibre (US fiber)         | włókno                                 |
| filter out               | odfiltrowywać                          |
| fine                     | drobny                                 |
| fixed grate              | piec statyczny                         |
| fluidized bed            | piec fluidalny                         |
| fly ash                  | popioły lotne                          |
| fuel                     | paliwo                                 |
| hydrate                  | uwodnić, nawodnić                      |
| garbage                  | śmieci                                 |
| exhaust gas              | gaz odlotowy (gazowy produkt spalania) |
| hazardous waste landfill | składowisko odpadów niebezpiecznych    |
| heavy metals             | metale ciężkie                         |
| incineration             | spopielanie                            |
| incinerator              | spalarnia                              |
| initial                  | początkowy                             |
| leaching                 | wyciekanie                             |
| mineral                  | mineralny                              |
| moving grate             | piec rusztowy                          |
| municipal                | komunalny                              |
| non-combustible          | niepalny                               |
| one-third                | jedna trzecia                          |

| oxidation     | utlenianie               |
|---------------|--------------------------|
| pose          | stwarzać, stanowić       |
| prevent       | zapobiegać               |
| readily       | z łatwością              |
| residue       | pozostałość              |
| risk          | ryzyko                   |
| scrubber      | skruber, płuczka         |
| vitrification | witryfikacja, zeszklenie |
| woven fabric  | tkanina                  |

# 18.2.3. Exercises

| 1. Match the appropriate phrases                 |                                                              |
|--------------------------------------------------|--------------------------------------------------------------|
| addition of adhesives                            | baghouse filter                                              |
| air pollution device                             | immobilization of bottom ash                                 |
| bottom ash                                       | fluidized bed or moving grate                                |
| combustible components of waste                  | fly ash                                                      |
| dioxins, furans and heavy metals                 | furnace for burning waste                                    |
| incineration technologies                        | the main contaminants<br>emitted during incineration         |
| incinerator                                      | paper, organic matter, plastics                              |
| small particles suspended in the gaseous exhaust | the solid residue collected at the bottom of the incinerator |

#### 2. Choose the appropriate expressions

Incineration of waste is a thermal **aggregation / oxidation** process leading to the production of energy and **significant / insignificant** waste reduction. In the incinerator, waste is **mineralized / hydrated** to CO<sub>2</sub> and H<sub>2</sub>O. However, some **organic / inorganic** contaminants such as dioxins and PAHs are also emitted during this process. These compounds readily condense on the particles of **bottom ash / fly ash**. Installing **woven / glass fibre** filters prevents air pollution by incineration products.

- 3. Questions and problems
- a. Compare landfilling and incineration by listing the advantages and disadvantages of both technologies.
- b. Explain the difference between moving grate and fluidized bed incinerators.
- c. Give specific examples of waste that may be incinerated with a low risk of toxic emissions and those that pose such a risk while being incinerated.

#### 18.3. Reuse and recycling

The basic principle of modern waste management is to avoid the production of waste. Recycling is an important way to minimize waste production. Recycling is defined as closing the flow of any material within its lifetime. The cycle may be closed at various levels. We can reuse goods as such, e.g. by collecting, cleaning and then refilling glass bottles. But the recycling of materials is more common, for example recycling the aluminium contained in cans or the lead from lead-acid accumulators. Closure also occurs during the production process, where manufactured waste is fed back at a specified material-processing step. It is critical for the quality of the final product that recycled waste is sufficiently pure and well separated from other types of waste. Therefore, the proper segregation of waste prior to recycling is very important.

Suitability for recycling varies significantly with the type of material. Generally, materials from process streams are fully recyclable because they are the same materials used in the manufacturing operation. Recycled materials from post-consumer sources may vary in their composition and are frequently applicable only to

uses requiring a lower quality. This process is called down-cycling or cascading. A typical example is the recycling of paper; but as the cellulose fibres in paper gradually wear down, this recycling is limited to just a few cycles. The chain usually goes from high quality paper, through newspaper to cardboard. The chain ends when the material is used for energy production through combustion.

### 18.3.1. Reading comprehension

- 1. What is the most general definition of recycling?
- 2. What is a necessary condition for successful recycling?
- 3. What types of materials are most suitable for recycling?
- 4. Why are materials from post-consumer sources less attractive to manufacturers?
- 5. What is meant by down-cycling?
- 6. When does the recycling cascade end in the case of the reuse of paper?

### 18.3.2. New terms and expressions

| adequate                 | odpowiedni, stosowny, właściwy        |
|--------------------------|---------------------------------------|
| aluminium can            | puszka aluminiowa                     |
| avoid                    | unikać, zapobiegać                    |
| bin                      | pojemnik (na śmieci)                  |
| cardboard                | karton, tektura                       |
| closure                  | zamknięcie                            |
| collect                  | zbierać                               |
| combustion               | spalanie (w spalarni)                 |
| compost                  | kompost, kompostować                  |
| crate                    | skrzynka                              |
| de-ink                   | usuwać farbę drukarską                |
| down-cycling (cascading) | kaskadowy (kolejne etapy recyklingu)  |
| feed back                | ponownie zasilić                      |
| fibre (US fiber)         | włókno                                |
| flow                     | przepływ                              |
| lead-acid accumulator    | bateria (akumulator) kwasowo-ołowiowa |
| lifetime                 | czas życia                            |
| manufacturing operation  | proces produkcyjny                    |
| material processing      | obróbka materiałów                    |
|                          |                                       |

| melt             | topnieć                            |
|------------------|------------------------------------|
| newspaper        | papier gazetowy (gazeta)           |
| post-consumer    | poużytkowy                         |
| prior            | przed                              |
| process stream   | strumień materiałowy               |
| recyclable       | nadający się do odzysku            |
| recycling        | recykling, recyrkulacja            |
| refill           | ponownie napełnić                  |
| reprocess        | ponownie przetworzyć               |
| reshape          | ponownie nadać kształt             |
| segregation      | segregacja, sortowanie             |
| separate         | oddzielić                          |
| shred            | rozdrabniać, rozdzierać na strzępy |
| sufficiently     | odpowiednio, wydajnie              |
| waste management | gospodarka odpadami                |
| wearing          | zużywanie                          |

# 18.3.3. Exercises

1. Match the appropriate waste to the listed recycling methods and describe them briefly. Give examples of applications of recycled products



| Recycling method            | Waste<br>no. | Description of the process and the application of the recycled materials                              |
|-----------------------------|--------------|-------------------------------------------------------------------------------------------------------|
| Reprocessing                |              | Shredding, melting and reshaping of used polymeric materials to new products.                         |
|                             |              | Reprocessed PE can be used for manufacturing carrier bags, rubbish bins and bags, bottle crates, etc. |
| Shredding and de-<br>inking |              |                                                                                                       |
| Composting                  |              |                                                                                                       |
| Washing and refilling       |              |                                                                                                       |
| Remelting                   |              |                                                                                                       |

#### 18.4. Hazardous waste

Any waste or combination of wastes posing a substantial present or potential hazard to human health or living organisms is classified as hazardous waste. Common types of hazardous waste include materials that may be toxic, ignitable, corrosive, reactive or radioactive. They are usually non-degradable, persistent in nature and may cause detrimental cumulative effects.

The management of hazardous waste consists of a multistep strategy starting from source reduction during production through recycling and reuse whenever suitable, up to the final treatment and disposal. Treatment of hazardous waste requires more elaborate technologies than those used for municipal waste. In the case of disposal, waste burial must take place in properly designed landfills, where the materials are grouped according to their physical and chemical characteristics so that incompatible materials are not placed near each other. In the case of incineration, great care is taken to ensure that the material is completely destroyed and that emissions are under full control. Rotary kiln, cement kiln and liquid injection installations are examples of toxic waste incinerators.

#### 18.4.1. Reading comprehension

- 1. What is hazardous waste?
- 2. What are the most common features of hazardous waste?
- 3. What are the main elements of a hazardous waste management strategy?
- 4. How does the treatment of hazardous waste differ from the treatment of municipal solid waste?
- 5. What types of incinerators are used for the combustion of hazardous waste?

| agriculture | rolnictwo              |
|-------------|------------------------|
| burial      | pogrzebanie, zakopanie |
| cement kiln | piec cementowy         |
| combination | kombinacja             |
| corrosive   | korozyjny              |
| cumulative  | kumulacyjny            |
| design      | projekt, projektowanie |

#### 18.4.2. New terms and expressions

| require                      | wymagać                           |
|------------------------------|-----------------------------------|
| expired                      | przeterminowany                   |
| destroy                      | zniszczyć                         |
| detrimental                  | szkodliwy                         |
| disposal                     | składowanie                       |
| elaborate                    | wymyślny, złożony, rozbudowany    |
| hazardous waste              | odpady niebezpieczne              |
| ignitable                    | zapalny                           |
| incompatible                 | niepasujący                       |
| liquid injection incinerator | spalarnia z wtryskiem cieczy      |
| management                   | zarządzanie, gospodarka           |
| manager                      | kierownik, menadżer               |
| medical care                 | służba zdrowia                    |
| multistep                    | wielostopniowy                    |
| non-degradable               | niedegradowalny                   |
| persistent                   | trwały, uciążliwy                 |
| pose                         | stanowić (tylko w tym kontekście) |
| radioactive                  | radioaktywny, promieniotwórczy    |
| reactive                     | reaktywny                         |
| rotary kiln                  | piec obrotowy rurowy              |
| source reduction             | zmniejszanie u źródła             |
| storage                      | magazynowanie                     |
| substantial                  | znaczny, pokaźny                  |
| suitable                     | pasujący, odpowiedni              |
| toxic                        | toksyczny                         |
| treatment                    | traktowanie, obchodzenie się      |

# 18.4.3. Exercises

| 1. Indicate which statements are true (T) and which are false (F). |                                                                                                                                 |       |  |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------|--|
| a.                                                                 | a. It is enough that waste is toxic to classify it as hazardous. T / F                                                          |       |  |
| b.                                                                 | MSW can contain hazardous waste.                                                                                                | T / F |  |
| C.                                                                 | The classification of hazardous waste in Poland differs from that used in other EU countries.                                   | T/F   |  |
| d.                                                                 | MSW landfills may accept hazardous waste under special agreements between waste producer and landfill manager.                  | T/F   |  |
| e.                                                                 | Expired pharmaceuticals, cadmium batteries and mercury thermometers are typical examples of household-produced hazardous waste. | T/F   |  |
| f.                                                                 | Cement kiln installations can be used for toxic waste incineration.                                                             | T / F |  |
| g.                                                                 | Hazardous waste should be processed by certified companies only.                                                                | T / F |  |
| 2. L                                                               | ist examples of hazardous waste produced in:                                                                                    |       |  |
| Ме                                                                 | dical care                                                                                                                      |       |  |
| Agriculture                                                        |                                                                                                                                 |       |  |
| Mechanical utilities                                               |                                                                                                                                 |       |  |
| Energy storage                                                     |                                                                                                                                 |       |  |
| Light emitters                                                     |                                                                                                                                 |       |  |
| MSW incineration                                                   |                                                                                                                                 |       |  |
| Industrial chemical synthesis                                      |                                                                                                                                 |       |  |
| The household                                                      |                                                                                                                                 |       |  |

# **19. Sustaining the Atmosphere for Life**

### 19.1. Depletion of the ozone layer

Ozone plays a crucial protective role in that it absorbs harmful ultraviolet radiation in the atmosphere. It is a natural shield that protects living organisms on the Earth from the effects of excessive amounts of such radiation. Any substantial reduction of stratospheric ozone may severely threaten nearly all forms of life.

In the stratosphere, ozone is produced by the following sequence of reactions:

$$O_2 + h\nu \rightarrow O + O$$
$$O + O_2 + M \rightarrow O_3 + M^* ,$$

where M is another molecule, usually nitrogen or oxygen, which absorbs the excess energy given off by the reaction. Absorption of a UV photon results in the decomposition of the ozone molecule to molecular and atomic oxygen, both in an excited state. Most of these decomposition products react again to re-form ozone. The ozone production – destruction cycle is called the Chapman mechanism.

In the 1960s it was realized that some other mechanisms of ozone destruction were operative in the stratosphere, in addition to the Chapman process. A number of natural and anthropogenic chemicals act as catalysts for ozone destruction, including NO, NO<sub>2</sub>, HO<sup>-</sup>, HOO<sup>-</sup>, CIO, CI, Br and BrO. Chlorine is thought to be the principal culprit in current stratospheric ozone depletion. It is generated by the photochemical decomposition of synthetic chlorine-containing organic chemicals emitted into the atmosphere from anthropogenic sources. The recent increase in stratospheric chlorine is attributed primarily to the use and release of chlorofluorocarbons, chemicals consisting of carbon, fluorine and chlorine, commonly known as CFCs. For years CFCs were used as coolants and propellants, which resulted in increased emissions of these compounds to the atmosphere. Since 1990s, most CFCs have been classified as ozone-depleting compounds and are now banned by international agreements. In 1995 Sherwood Rowland, Mario Molina and Paul Crutzen were awarded the Nobel Prize in Chemistry for their explanation of atmospheric ozone depletion.

### 19.1.1. Reading comprehension

- 1. What is the role of ozone in the upper atmosphere?
- 2. How are ozone molecules formed in the stratosphere?
- 3. What happens after an ozone molecule has absorbed a UV photon?
- 4. What is meant by the Chapman mechanism (cycle)?
- 5. Which anthropogenic catalysts can accelerate ozone depletion?
- 6. Why do CFCs cause depletion of the ozone layer?

| altitude                  | wysokość                               |
|---------------------------|----------------------------------------|
| artificial                | sztuczny                               |
| attribute                 | przypisać                              |
| ban                       | zabronić, zakazać                      |
| catalyst                  | katalizator                            |
| chlorofluorocarbons       | chlorofluorowęglowodory (freony)       |
| coolant                   | czynnik chłodzący, chłodziwo           |
| crucial                   | zasadniczy, istotny (w tym kontekście) |
|                           |                                        |
| decomposition             | rozpad                                 |
| depletion                 | zubożenie                              |
| disappear                 | znikać                                 |
| excess                    | nadmiar                                |
| excessive                 | nadmierny                              |
| excited state             | stan wzbudzony                         |
| free radical              | wolny rodnik                           |
| fuel                      | paliwo                                 |
| harmful                   | szkodliwy                              |
| Nobel Prize               | Nagroda Nobla                          |
| operate                   | działać, zachodzić                     |
| ozone                     | ozon                                   |
| ozone depleting compounds | substancje zubożające warstwę ozonową  |
| ozone layer               | warstwa ozonowa                        |
| propellant                | gaz wyrzutowy, propelent               |
| protective                | ochronny                               |
| re-form                   | tworzyć ponownie                       |
|                           |                                        |

### 19.1.2. New terms and expressions

| release                    | wprowadzenie                |
|----------------------------|-----------------------------|
| rocket                     | rakieta                     |
| severely                   | poważnie, dotkliwie         |
| shield                     | tarcza, osłona              |
| stratospheric              | stratosferyczny             |
| substantial                | istotny                     |
| threaten                   | zagrozić                    |
| ubiquitous                 | powszechny, wszędobylski    |
| ultraviolet (UV) radiation | promieniowanie nadfioletowe |

#### <u>19.1.3. Exercises</u>

1. Indicate which statements are true (T) and which are false (F).

| a. | Ozone is formed by the reaction of two molecules of oxygen. | T / F |
|----|-------------------------------------------------------------|-------|
|----|-------------------------------------------------------------|-------|

- b. Stratospheric ozone protects living organisms from excessive UV T / F radiation.
- c. The units used for measuring the amount of ozone in the atmosphere are T / F called Dobson units.
- d. The ozone layer may disappear seasonally above polar regions. T / F
- e. The emission of bromine-containing compounds is the main reason for T / F anthropogenic ozone destruction.
- f. CFCs are ubiquitously present in the atmosphere because they were T / F used as rocket fuel.
- 2. Questions and problems
- a. What are the altitude ranges of the troposphere and stratosphere?
- b. Explain the difference between stratospheric and tropospheric ozone from the point of view of hazards to human health.
- c. Define the term 'free radical' and give two examples relevant to the chemistry of the stratosphere.
- d. What ranges of UV radiation (wavelength in nm) are filtered off by O<sub>2</sub> and by O<sub>3</sub>? Would there be any danger to human health if this radiation were not stopped?
- e. Explain the term "excited state".

### 19.2. Acid precipitation and photochemical smog

Acid rain is one of the most serious environmental problems facing many regions of the world. This term refers to precipitation that is significantly more acidic than natural rain. The excessive acidity of rainwater is caused by the presence of sulphuric acid and nitric acid, both of which are strong acids. They are formed in the atmosphere during the transport of air masses that contain primary pollutants such as sulphur dioxide and nitrogen oxides. The main anthropogenic source of SO<sub>2</sub> is the combustion of coal, which usually contains 1-6% of sulphur, depending on its origin. Since primary pollutants travel long distances in the atmosphere, acid rain may affect countries that do not necessarily release them into the atmosphere. For example, a significant fraction of the acid precipitation in Scandinavian countries originates in Poland, eastern Germany or the Czech Republic.

Acid rain devastates nature through its direct impact on plants but also through the deterioration of soils. The latter is caused by the leaching of some plant nutrients, such as potassium, calcium and magnesium ions, which are exchanged for hydrogen ions in an acidic medium.

Smog is the other main environmental problem related to ground level pollution. The word 'smog' was originally coined from a combination of 'smoke' and 'fog', but the formation of modern-day, photochemical smog involves hundreds of reactions in which chemicals (primary pollutants) such as nitric oxide and volatile organic compounds (VOC) participate, which are often present in excess in the urban atmosphere. In the presence of oxygen and sunshine (enhancing the formation of very reactive free radicals) they are transformed into a harmful mixture of ozone, nitric acid and various organics. Nitric oxide is the most important reactant in any photochemical smog episode. It is produced whenever a fuel is burned in air with a hot flame. Therefore, one of the most significant anthropogenic sources of NO is motor vehicle traffic.

## 19.2.1. Reading comprehension

- 1. What are the main components of acid rain?
- 2. What primary pollutants contribute to the formation of acid rain?
- 3. What are the main sources of atmospheric  $SO_2$  and NO?
- 4. How does acid precipitation cause soils to deteriorate?
- 5. What are the main constituents (primary and secondary) of photochemical smog?
- 6. What is the role of sunshine in the formation of photochemical smog?

| acid precipitation | kwaśny opad                      |
|--------------------|----------------------------------|
| acidic             | kwaśny                           |
| affect             | wywierać wpływ                   |
| air masses         | masy powietrza                   |
| calcium            | wapń                             |
| coal               | węgiel                           |
| coined             | wymyślone (o nowym słowie)       |
| combustion         | spalanie                         |
| corrosive          | niszczący, korozyjny, żrący      |
| deterioration      | degradacja, stopniowe niszczenie |
| devastate          | dewastacja, zniszczenie          |
| distance           | odległość                        |
| enhance            | wzmagać                          |
| exclude            | wyłączyć, usunąć                 |
| flame              | płomień                          |
| fog                | mgła                             |
| free radical       | wolny rodnik                     |
| ground level       | warstwa przyziemna               |
| harmful            | szkodliwy                        |
| leach              | wypłukiwać, wymywać              |
| liberation         | uwolnienie                       |
| limestone          | wapień, kamień wapienny          |
| magnesium          | magnez                           |
| marble             | marmur                           |

### 19.2.2. New terms and expressions

| motor vehicle traffic          | ruch comochodows/                             |
|--------------------------------|-----------------------------------------------|
|                                | ruch samochodowy                              |
| nitric acid                    | kwas azotowy                                  |
| nitric oxide                   | tlenek azotu                                  |
| nitrogen oxides                | tlenki azotu                                  |
| nutrient                       | biogen, składnik odżywczy                     |
| origin                         | pochodzenie                                   |
| oxygen                         | tlen                                          |
| photochemical smog             | smog fotochemiczny                            |
| potassium                      | potas                                         |
| primary pollutant              | zanieczyszczenie pierwotne                    |
| precursor                      | prekursor                                     |
| predominant                    | przeważający                                  |
| pyrite (iron disulphide)       | piryt (dwusiarczek żelaza, FeS <sub>2</sub> ) |
| reactant                       | reagent                                       |
| reaction rate                  | szybkość reakcji                              |
| Scandinavian countries         | kraje skandynawskie                           |
| smoke                          | dym                                           |
| sulphur                        | siarka                                        |
| sulphur dioxide                | dwutlenek siarki                              |
| sulphuric acid                 | kwas siarkowy                                 |
| sunshine                       | słoneczna pogoda                              |
| thereupon                      | w rezultacie                                  |
| urban                          | miejski                                       |
| volatile organic compounds VOC | lotne zanieczyszczenia organiczne LZO         |

#### 19.2.3. Exercises

| 1. Match the appropriate phrases          |                                                  |
|-------------------------------------------|--------------------------------------------------|
| acid rain                                 | VOC                                              |
| combustion of coal                        | cities where smog was defined for the first time |
| leaching nutrients                        | deterioration of soils                           |
| liberation of Al <sup>3+</sup> from soils | indirect phytotoxic effect of acid rain          |
| Los Angeles / London                      | mineral form of sulphur in the fossil fuels      |
| NO + VOC                                  | precipitation of low pH                          |
| pyrite                                    | predominant acids in acid rain                   |
| smog                                      | primary pollutants in smog                       |
| sulphuric and nitric acid                 | smoke + fog                                      |
| volatile organic compounds                | anthropogenic source of SO <sub>2</sub>          |

#### 2. Choose the appropriate expressions.

Sulphuric / hydrochloric acid is the main component of the acid precipitation from polluted air. The main sulphur precursors of acid rain are most often formed during fossil fuel combustion / waste incineration. Acid rain may be characterized as a point / dispersed type of pollution. Deterioration of soil occurs when its pH is significantly raised / lowered as a result of acid precipitation. The necessary condition for photochemical smog formation is sunshine / darkness, because involved reactions take place. London / Warsaw was the first European city where smog was observed and described.

#### 3. Questions and problems

- a. Explain the chemistry involved in the corrosive effect of acid rain on buildings and monuments of limestone or marble.
- b. Explain why free radicals enhance the rate of reactions associated with smog.

c. Discuss the technical possibilities of reducing acid rain precursors (e.g. eliminating sulphur from the fossil fuels).

#### 19.3. The greenhouse effect and climate change

The terms 'greenhouse effect' and 'global warming' refer to the increase in the average global temperature as a result of the build-up of 'greenhouse gases' in the atmosphere. Greenhouse gases, including the infamous carbon dioxide, are substances that allow incoming solar radiant energy to penetrate to the Earth's surface while absorbing the infrared radiation emitted from it. The levels of these gases in the atmosphere have been increasing rapidly in recent decades. Although there are uncertainties associated with global warming, several aspects pertaining to the phenomenon are well established.

It is known that along with water vapour,  $CO_2$  and gases such as  $CH_4$  and  $N_2O$  are primarily responsible for the absorption of the infrared energy re-emitted by the Earth. Carbon dioxide traps about half the atmospheric heat retained by greenhouse gases. It is produced mainly by the combustion of fossil fuels and by deforestation accompanied by the burning and biodegradation of biomass. Current evidence suggests that changes in the atmospheric carbon dioxide level will substantially alter the Earth's climate through the greenhouse effect. With current trends, it is likely that during this century global  $CO_2$  levels will reach double the pre-industrial level, which may raise the Earth's mean surface temperature by as much as  $4^{\circ}C$ .

Such a dramatic climate change may lead to potentially disastrous situations: the rapid shrinking of the Earth's ice cover; sea levels rising to such an extent that they may engulf Pacific islands; extreme weather events, including heavy storms, hurricanes and increased precipitation. Moreover, an increase in the temperature may also disrupt the seasonal cycles. Shorter winter periods may affect the life of many plant species and may increase the occurrence of mosquito-borne diseases in higher latitudes. It is also predicted that climate change will lead to drought in many areas as a result of the consequent water shortage, further reducing vegetation, and finally to soil erosion and desertification.

## 19.3.1. Reading comprehension

- 1. Explain in simple terms what the greenhouse effect is.
- 2. Why are greenhouse gases able to retain heat near the Earth's surface?
- 3. What are the main greenhouse gases and what are their sources?
- 4. What is the current trend of  $CO_2$  emissions leading to?
- 5. What are the main possible consequences of global warming?

### 19.3.2. New terms and expressions

| absorption              | absorpcja, pochłanianie       |
|-------------------------|-------------------------------|
| accompany               | towarzyszyć                   |
| alter                   | zmieniać, modyfikować, różnić |
| altitude                | wysokość                      |
| behaviour (US behavior) | zachowanie                    |
| breathe                 | oddychać                      |
| build-up                | nagromadzenie, spiętrzenie    |
| century                 | wiek                          |
| current                 | obecny, współczesny           |
| decade                  | dekada, dziesięciolecie       |
| deforestation           | wylesianie                    |
| desertification         | pustynnienie                  |
| disturb                 | zaburzyć, przeszkodzić        |
| disastrous              | zgubny, katastroficzny        |
| dramatic                | dramatyczny, gwałtowny        |
| drought                 | susza                         |
| engulf                  | pochłaniać                    |
| evidence                | dowód                         |
| fossil fuel             | paliwo kopalne                |
| global warming          | globalne ocieplenie           |
| greenhouse              | szklarnia, cieplarnia         |
| greenhouse effect       | efekt cieplarniany            |
| greenhouse gases        | gazy cieplarniane             |
| hurricane               | huragan                       |
| ice cover               | pokrywa lodowa                |
| incoming                | przychodzący, wchodzący       |

| infamous                | niesławny, cieszący się złą sławą  |
|-------------------------|------------------------------------|
| infrared radiation      | promieniowanie podczerwone         |
| mosquito-borne diseases | choroby roznoszone przez komary    |
| ordinary                | zwykły, kolokwialny                |
| pertain                 | odnosić się do                     |
| phenomenon              | zjawisko                           |
| prediction              | prognoza, przewidywanie            |
| pre-industrial          | preindustrialny                    |
| rapid                   | gwałtowny                          |
| re-absorbtion           | reabsorpcja                        |
| re-emitted              | reemisja                           |
| refer (to)              | odnosić się (do)                   |
| shortage                | brak, niedobór                     |
| shrinking               | kurczenie się                      |
| solar radiant energy    | energia promieniowania słonecznego |
| substantially           | duży, ważny, poważny               |
| threaten                | grozić, zagrażać                   |
| trap                    | wychwytywać, więzić                |
| uncertainty             | niepewność                         |
|                         |                                    |

# <u>19.3.3. Exercises</u>

## 1. Fill in the blanks

| Carbon dioxide is the main gas responsible for about half of the              |
|-------------------------------------------------------------------------------|
| effect. Other examples of such gases are,                                     |
| and The re-absorption of                                                      |
| radiation emitted from the Earth is believed to be the main reason for        |
| warming. It is being predicted that this process will lead to weather events  |
| such as storms, but also to the of large areas as a result of drought         |
| and soil erosion. It is also predicted that in latitude regions the incidence |
| of diseases will increase significantly.                                      |

- 2. Indicate which statements are true (T) and which are false (F).
- a. The main gases responsible for the greenhouse effect are carbon oxide T / F and nitric oxide.
- b. Greenhouse gases re-absorb ultraviolet radiation emitted by the Earth. T / F
- c. Anthropogenic carbon dioxide is primarily produced by the combustion T / F of fossil fuels.
- d. A significant part of  $CO_2$  in the atmosphere is emitted by humans while T / F breathing.
- e. The increased rate at which the Earth's ice cover is melting may be a T / F serious threat to Pacific islands.

#### 19.4. Particulate matter in air

Smoke in vehicle exhausts and from industrial processes consists largely of particulate matter. Particulates are suspensions in air of tiny solid or liquid particles, usually individually invisible to the unaided human eye. Apart from smoke, anthropogenic particulates include those from the wear and tear of vehicle tyres and brakes, as well as dust from metal smelting. The incomplete combustion of fossil fuels such as coal, oil, petrol and diesel fuel produces fine soot particles, which are usually crystallites of carbon.

Motor vehicle traffic is one of the major sources of carbon-based atmospheric particulates. The PM index is a measure of the concentration of particles suspended in air, used in air quality monitoring. PM gives the mass of particulate matter present in a given volume of air and is usually expressed in  $\mu g m^{-3}$ . The PM<sub>10</sub> parameter refers to the total concentration of particles with a diameter of less than 10  $\mu m$ . These are also called inhalable particles, since they can be breathed into the lungs. A typical value of PM<sub>10</sub> in urban areas is 20 – 30  $\mu g m^{-3}$ . The PM<sub>2.5</sub> index, also known as the respirable fraction, refers to particles smaller than 2.5  $\mu m$  in diameter, which are able to penetrate to the gas exchange area deep in the lungs.

The adverse health effects of particulate matter is due not only to the particles themselves, but also to various substances adsorbed on their surfaces. Particulates

act as carriers for aromatic and aliphatic hydrocarbons, chlorinated organics as well as heavy metals.

### 19.4.1. Reading comprehension

- 1. What is particulate matter?
- 2. What are the main sources of anthropogenic particulates in air?
- 3. What are the PM indices and which particle sizes are usually taken into account?
- 4. What is the difference between the inhalable and respirable fractions?
- 5. What types of contaminants may be present on the surface of particles suspended in air?

| anthropogenic         | antropogeniczny          |
|-----------------------|--------------------------|
| brake                 | hamulec                  |
| breath; breathe       | oddech; oddychać         |
| carrier               | nośnik                   |
| crystallites          | kryształki, krystality   |
| diameter              | średnica, rozmiar        |
| dust                  | kurz                     |
| exhaust               | wydech, wylot            |
| fine                  | drobny                   |
| fossil fuels          | paliwa kopalne           |
| incomplete            | niecałkowity             |
| inhalable fraction    | frakcja wdychana         |
| invisible             | niewidzialny             |
| lungs                 | płuca                    |
| motor vehicle traffic | ruch samochodowy         |
| particulate           | pyłowy, zawiesina pyłu   |
| PM index              | indeks pyłu zawieszonego |
| respirable fraction   | frakcja respirabilna     |
| smelting              | stapianie, hutnictwo     |
| smoke                 | dym                      |
| soot                  | sadza                    |

### 19.4.2. New terms and expressions

| suspend        | zawiesić           |
|----------------|--------------------|
| tiny           | maleńki            |
| tyre (US tire) | opona              |
| urban areas    | obszary miejskie   |
| vehicle        | pojazd             |
| wear and tear  | ścieranie, zużycie |

### 19.4.3. Exercises

## 1. Fill in the blanks

| The main source of particulates in the atmosphere is traffic,                       |
|-------------------------------------------------------------------------------------|
| the wear and tear of and the incomplete of diesel fuel. The                         |
| metal industry also contributes to the total particulate emissions. The $PM_{10}$   |
| index refers to the of all in the air having diameters less                         |
| than 10 $\mu m.$ The fraction is represented by the $PM_{2.5}$ index. This fraction |
| contains particulates able to deep into the Suspended                               |
| particles are very good adsorbents for a variety of chemicals, including            |
| metals and volatile organic                                                         |

# 20. Bibliography

- 1. R. Chang "Chemistry", McGraw Hill, 2002, Boston, USA.
- 2. M. S. Silberberg "Chemistry. The Molecular Nature of Matter and Change", McGraw Hill, 2003, Boston, USA.
- 3. T. W. G. Solomons, C. G. Fryhle "Organic Chemistry", John Wiley & Sons, Inc., 2002, New York, USA.
- 4. S. T. Manahan "Environmental Science and Technology . A Sustainable Approach to Green Science and Technology", CRC Press, 2007, Boca Raton, USA.
- 5. C. Baird, M. Cann "Environmental Chemistry", W.H. Freeman and Co., 2005, New York, USA.
- "Hazardous Waste. Management Handbook", A. Porteous (Ed.), Butterworth & Co. 1985, London, UK.
- 7. T. Pankratz "Environmental Engineering Dictionary and Directory" CRC Press, 2001, Boca Raton, USA.