Advansowane techniki utleniania Wprowadzenie do AOPS Fotokaliza homogeniczna i heterogeniczna

Adriana Zaleska-Medynsk

Wykład 6

Wykład 6

- 1. Źródła promieniowania
- 2. Procesy fotochemiczne promieniowania z materią
- 3. Fotoreaktory
- 4. Fotokataliza homogeniczna

– oddziaływania

Procesy fotochemiczne stosowane to oczyszczania/uzdatniania wód i ścieków

AOPs using radiation for the generation of hydroxyl radicals

AOP	key reaction	wavelength
UV/H_2O_2	$H_2O_2 + h\nu \rightarrow 2HO^{\bullet}$	λ < 300 nm
UV/O3	$O_3 + h\nu \to O_2 + O(^1D)$ $O(^1D) + H_2O \to 2HO^{\bullet}$	λ < 310 nm
$UV/H_2O_2/O_3$	$O_3 + H_2O_2 + h\nu \rightarrow O_2 + HO^{\bullet} + HO_2^{\bullet}$	λ < 310 nm
UV/TiO2	$TiO_{2} + h\nu \rightarrow TiO_{2}(e^{-} + h^{+})$ $TiO_{2}(h^{+}) + HO_{ad}^{-} \rightarrow TiO_{2} + HO_{ad}^{\bullet}$	λ < 390 nm
Fenton	$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + HO^{\bullet} + HO^{-}$	
Photo-Fenton	$Fe^{3+} + H_2O + h\nu \rightarrow Fe^{2+} + H^+ + HO^{\bullet}$	$\lambda < 580 \mathrm{nm}$

OH radicals: high oxidation potential (2.8 V), reactive, nonselective

Źródła promieniowania widzialnego i nadfioletu

Widmo fal elektromagnetycznych

Źródła promieniowania widzialnego i nadfioletu

Promieniowanie słoneczne

Stała słoneczna – moc promieniowania słonecznego docierającego do atmosfery przeliczona na jednostkę powierzchni

POCHŁONIĘTE PRZEZ POW. ZIEMI

Ziemia – 1366,1 W/m² $Merkury - 9937 W/m^2$ Neptun – 1,5 W/m²

Sztuczne źródła promieniowania widzialnego i nadfioletu

- I. Lampy wyładowcze
- a) Lampy rtęciowe
- b) Lampy ksenonowe
- c) Lampy sodowe
- d) Lampy deuterowe, wolframowe
- II. Diody LED
- III. Lasery

Sprawność źródła

- Skuteczność świetlna
 - Stosunek strumienia świetlnego wyemitowanego przez źródło do pobranej mocy elektrycznej

$$\eta = \frac{\Phi}{P} \left[\frac{lm}{W} \right] \qquad \max(\eta) = 683 \left[\frac{lm}{W} \right]$$

- Sprawność całkowita (energetyczna)
 - Stosunek energii wyemitowanej przez źródło w postaci światła do pobranej energii elektrycznej

$$\eta_E = \frac{E_{sw}}{E_{el}} = \frac{\eta}{\max(\eta)} = \frac{\eta [lm/W]}{683[lm/W]} \left[-\right]$$

Lampy rtęciowe

$\begin{array}{l} Hg ({}^{3}P_{1}) \rightarrow Hg ({}^{1}S_{0}) + hv \\ Hg ({}^{1}P_{1}) \rightarrow Hg ({}^{1}S_{0}) + hv \end{array}$

Źródło promieniowania:

wyładowanie w parach rtęci o dużym ciśnieniu. Wyładowanie odbywa się w jarzniku zawierającym rtęć oraz argon.

2 główne pasma: 253,7 nm

185,0 nm (zazwyczaj odcinane przez kwarcową obudowę

Lampy rtęciowe

Wady:

Zalety:

Duża trwałość (około 20 000h)

□ Niewielki spadek strumienia świetlnego w czasie

świecenia lampy

Schemat układu fotokatalitycznego

Źródło promieniowania UV-Vis:

Lampa rtęciowa, średniociśnieniowa, filtr λ>350 nm

Metalohalogenkowe

□ lampy rtęciowe ze specjalnymi domieszkami

- Źródło promieniowania: wyładowanie w mieszaninie par rtęci i jodków metali (np. sodu, skandu, talu, indu, metali ziem rzadkich)
- Ciepło powstające podczas zapłonu lampy powoduje rozkład halogenków i metale są uwalniane w postaci pary
- zmiana rozkładu widmowego
- zwiększenie skuteczności świetlnej

Metalohalogenkowe

Wady:

 Duża wrażliwość emitowanego widma promieniowania na zmiany napięcia zasilającego
<u>Stosunkowo długi czas osiągania</u> znamionowych parametrów fotometrycznych
<u>Brak możliwości natychmiastowego,</u> ponownego zapłonu

Zalety:

skuteczność świetlna (ok.

- 24%) Wysoka trwałość (do 20 000h)
- Bogate widmo
- <u>promieniowania w zakresie</u>
- widzialnym
- Małe wymiary jarznika i duża

luminancja

Diody LED

- Źródło promieniowania: składa się z dwóch różnych bezpośrednio połączonych ze sobą półprzewodników charakteryzujących się różnym typem przewodnictwa
- Dołączenie do złącza p-n napięcia stałego, polaryzującego go w kierunku przewodzenia wymusza ruch nośników prądu elektrycznego
- Pod wpływem pola elektrycznego w wyniku rekombinacji nośników ładunku dochodzi do emisji promieniowania elektromagnetycznego
- W zależności od rodzaju materiału przewodnika jest emitowane promieniowanie o określonej długości fali

Diody LED

Zalety:

- monochromatyczność promieniowania
- □ bardzo duża trwałość (50 000 do 100 000h)
- wysoka skuteczność świetlna (20%)
- 🗖 mała emisja ciepła
- 🖵 odporność na szoki mechaniczne, wibracje 🛽
- Możliwe jest osiągnięcie dowolnej barwy całego
- obszaru widma widzialnego
- □ małe wymiary
- niezawodność w działaniu
- możliwość łatwego sterowania światłem

Materiał	Wg	Domieszka	Zakres
GaAs	1.443	Si	IR
GaP	2.26	N	Zielony
GaP	2.26	N,N	Żółty
GaP	2.26	Zn,O	Czerwony
GaAs0.6P0.4	2.1	N	Czerwony
GaAs0.35P0.65	2.1	N	Pomarańczowy
<i>GaAs</i> 0.15 <i>P</i> 0.85	2.1	N	Żółty
Ga0.6A/0.4As	2.1	Zn	Czerwony
GaxA/1 - xAs(1 < x < 0.7)	2.1	Si	IR

700

White Light LEDs

Procesy fotochemiczne

- Przemiana lub ciąg przemian chemicznych spowodowanych absorpcją promieniowania świetlnego
- Podstawowym warunkiem jest zbieżność charakterystyki energetycznej stosowanego promieniowania i charakterystyki energetycznej substratów reakcji, tj. energia kwantów stosowanego promieniowania powinna ściśle odpowiadać odpowiednim różnicom dozwolonych stanów energetycznych cząsteczki

Podstawy fizykochemiczne

Postacie energii cząsteczki

Podstawy fizykochemiczne

Postacie energii cząsteczki: Energia stanów elektronowych

Schemat stanów energetycznych atomu

 przechodząc z wyższego poziomu energetycznego E₂ na niższy poziom E₁, atom emituje kwant energii (foton) charakteryzujący się częstością fali elektromagnetycznej v

 $E_{2}-E_{1} = hv$

gdzie h – stałą Plancka

Gdy energię atomu chcemy podnieść z poziomu E₁ do poziomu energetycznego E₂, to musimy dostarczyć taki sam kwant energii w postaci promieniowania o częstości v, który zostaje przez atom pochłonięty

Podstawy fizykochemiczne

Postacie energii cząsteczki: Energia stanów elektronowych

Podstawy fizykochemiczne Postacie energii cząsteczki

- Energia stanów elektronowych ~1 ÷ 10 eV (UV-Vis)
- Energia ruchów oscylacyjnych ~10⁻¹ ÷ 10⁻² eV (IR)
- Energia rotacji ~10⁻² ÷ 10⁻³ eV (daleki IR, zakres fal wysokiej częstotliwości)

- Tylko promieniowanie o krótkich falach (UV-Vis) może spowodować przejście cząsteczki na wyższy poziom elektronowy
- Promieniowanie IR może spowodować przejście na wyższe poziomy oscylacyjne i rotacyjne

Energia mola fotonów

(energia fotonu x liczba Avogadro)

- Promieniowanie UV (dla λ ~200 nm) ~600 kJ/mol
- Promieniowanie Vis (400-700 nm) 300-170 kJ/mol
- Promieniowanie IR (dla λ ~1000 nm) 120 kJ/mol
- Energia wiązań atomu w cząsteczce ~200-400 kJ/mol

 NAJWIĘKSZE ZNACZENIE PRAKTYCZE DLA PRZEPROWADZANIA REAKCJI FOTOCHEMICZYCH ZWIĄZANYCH Z ZERWANIEM WIĄZAŃ POWINNO MIEĆ PROMIENIOWAIE Z ZAKRESU od UV do bliskiej IR **Procesy fotochemiczne** Jak zaprojektować?

W procesach fotochemicznych, w których są wykorzystywane reakcje chemiczne wzbudzonych cząstek, stosuje się źródła światła emitujące promieniowanie monochromatyczne lub zbliżone do monochromatycznego o długości fali odpowiadającej energii wzbudzenia

Długość fali promieniowania jaką należy stosować w zamierzonej reakcji fotochemicznej, określa się na podstawie widma absorpcyjnego substratów reakcji

Fotochemia

- Absorpcja promieniowania
 - Transmitancja
 - $T = I/I_0$
 - Absorbancja
 - $A = \log I_0 / I = \log T^{-1}$
 - Prawo Lambert'a-Beer'a
 - $A = \mathcal{E}CI$
 - *E*, L mol⁻¹ cm⁻¹: współczynnik ekstynkcji
 - *C*, mol L⁻¹: stężenie
 - *I*, cm: grubość warstwy pochłaniającej

 $\leftarrow b \rightarrow$

С

 P_{o}

10

Jak wyznaczyć geometrię fotoreaktora?

Jak wyznaczyć geometrię fotoreaktora?

$$\log(|I_o/I|) = \varepsilon \cdot c \cdot I$$

- gdzie: ε współczynnik ekstynkcji; c stężenie; lgrubość warstwy pochłaniającej
- Znając wartość ɛ, można łatwo wyznaczyć dla danej długości fali grubość warstwy pochłaniającej cześć promieniowania określonej stosunkiem I/I_o
- Wyznaczenie grubości warstwy pochłaniającej ma istotne znaczenie dla projektowania reaktora fotochemicznego (w zależności od ɛ i stężenia stosowanego medium, grubość może się wahać od milimetrów do blisko metra)

Fotoreaktory

On the conversion of quinone into quinol (1886)

Prof. Giacomo Ciamician (1857-1922) at the roof of Chemical Institute in Bolonia (Italy)

Fotoreaktory

The simplest photoreactors

Solar disinfection (SODIS) technique:

- (1) Fill the bottle;
- (2) Place the bottle in the direct sunlight
- (3) Wait a minimum 6h
- (4) The water is safe for drink

D.A. Keane et al. / Catal. Sci. Technol. 4 (2014) 1211-1226

Fotoreaktory

Liquid phase photoreactors

(A): compound parabolic collector; (B) parabolic trough reactor (PTR);(C) double skin sheet reactor (DSSR); (D) batch reactor

Fotoreaktory z lampą zanurzeniową

Fotoreaktory z wewnętrznym i zewnętrznym źródłem promieniowania

Fotoreaktory z zewnętrznym źródłem promieniowania

(a) fotoreraktor zawiesinowy

(b) fotoreaktor z cienką warstwą fotokatalizatora

Fotoreaktor z wewnętrznym źródłem promieniowania

Photoreactor used for
destructionof
of
of
contaminants:1-Heraeusmedium
pressure mercury lamp,

2- magnetic stirrer,

3-rotameter,

4- UV lamp cooling system

Fotoreaktory wykorzystujące promieniowanie słoneczne

compound parabolic collector (CPS)

flat photoreactors

Fotoreaktory wykorzystujące promieniowanie słoneczne

Photo of solar reactor for the treatment of contaminated waters in southern Spain (Almeria)

The row of photoreactors (top picture) and the 500 gallon storage tank (bottom right picture) are primary components of the R2000 Solar Oxidation Facility. The R2000 was installed at a remediation site in Gainesville, Florida alongside an active carbon absorption system (bottom left picture).

Fotoreaktory przepływowe

Fotoreaktory przepływowe

Oczyszczanie ścieków

Fotokataliza homogeniczna

Table 1.13 AOPs using radiation for the generation of hydroxyl radica	ls
---	----

AOP	key reaction	wavelength	
UV/H_2O_2	$H_2O_2 + h\nu \rightarrow 2HO^{\bullet}$	λ < 300 nm	Eq. 1.8
UV/O3	$O_3 + h\nu \rightarrow O_2 + O(^1D)$ $O(^1D) + H_2O \rightarrow 2HO^{\bullet}$	λ < 310 nm	Eq. 1.9 Eq. 1.10
$UV/H_2O_2/O_3$	$O_3 + H_2O_2 + h\nu \rightarrow O_2 + HO^{\bullet} + HO_2^{\bullet}$	λ < 310 nm	Eq. 1.11
UV/TiO ₂	$TiO_{2} + h\nu \rightarrow TiO_{2}(e^{-} + h^{+})$ $TiO_{2}(h^{+}) + HO_{ad}^{-} \rightarrow TiO_{2} + HO_{ad}^{\bullet}$	λ < 390 nm	Eq. 1.12 Eq. 1.13
Fenton Photo-Fenton	$\begin{split} Fe^{2+} + H_2O_2 &\rightarrow Fe^{3+} + HO^\bullet + HO^- \\ Fe^{3+} + H_2O + h\nu &\rightarrow Fe^{2+} + H^+ + HO^\bullet \end{split}$	λ < 580 nm	Eq. 1.14 Eq. 1.15

Potencjał redox różnych utleniaczy

Table 1. Relative oxidation power of some oxidizing species [2, 3]

Oxidizing species	Relative oxidation power
Chlorine	1.00
Hypochlorous acid	1.10
Permanganate	1.24
Hydrogen peroxide	1.31
Ozone	1.52
Atomic oxygen	1.78
Hydroxyl radical	2.05
Positively charged hole on titanium dioxide, TiO ₂ ⁺	2.35

Stała szybkości reakcji ozonu oraz rodników OH

Compound	O ₃	OH
Chlorinated alkenes	$10^{3}-10^{4}$	$10^9 - 10^{11}$
Phenols	10^{3}	$10^9 - 10^{10}$
N-containing organics	$10 - 10^2$	$10^{8} - 10^{10}$
Aromatics	$1 - 10^{2}$	$10^8 - 10^{10}$
Ketones	1	$10^9 - 10^{10}$
Alcohols	$10^{-2} - 1$	$10^{8} - 10^{9}$

Table 2. Reaction rate constants $(k, M^{-1} s^{-1})$ of ozone vs. hydroxyl radical [4]

Fotoliza bezpośrednia H₂O₂

 $H_2O_2 \xrightarrow{hv} 2^{\circ}OH$

Również jony HO₂⁻ pozostające w równowadze kwasowo-zasadowej z H₂O₂ absorbują promieniowanie o długości fali 254 nm

$$H_2O_2 \iff HO_2^- + H^+$$
$$HO_2^- \xrightarrow{hv} OH + O^-$$

Proces UV/H₂O₂

FIGURE 1 - A schematic diagram of lab scale treatment reactor

Proces UV/H₂O₂

TABLE 3 - The changes in wastewater characteristics in pretreatment step.

Parameter	Influent	Effluent
COD (mg/L)	6400	5240
$BOD_5 (mg/L)$	1285	1020
BOD ₅ /COD	0.2	0.194
TSS (mg/L)	450	75
pH	6.4	5.3

ChZT/BZT₅ > 2,5 (powolny rozkład, duża zawartość substancji niebiodegradowalnych) ChZT/BZT₅ < 1,8 (podatność zanieczyszczeń na biodegradację)</pre>

Proces UV/H₂O₂ – wpływ pH

FIGURE 2 - Determination of optimum pH.

Stosunek BZT₅/ChZT zmieniał się od 0,21 (dla pH=5) do 0,22 dla pH = 7 \Rightarrow wzrost podatności na biodegradację

Proces UV/H₂O₂ – wpływ dawki H₂O₂

FIGURE 3 - Determination of optimum H₂O₂ concentration.

Proces UV/H₂O₂ – czas kontaktu

FIGURE 4 - Determination of optimum contact time

Proces UV/H₂O₂ – mechanizm degradacji DMSO

Proces UV/H₂O₂ – mechanizm degradacji DMSO

Reactions used in the kinetic model

No.	Reaction	$k (M^{-1} s^{-1})$
1. • <i>OH gen</i>	eration from H_2O_2 photolysis	
I	$H_2O_2 + hv \rightarrow 2^{\bullet}OH$	$\Phi I_0(1-10^{-\epsilon 1[H_2O_2]})$
II	$\bullet OH + H_2O_2 \rightarrow HO_2^{\bullet} + H_2O_2$	2.7×10^{7}
ш	$\bullet OH + \bullet OH \rightarrow H_2O_2$	$1.1 imes10^{10}$
IV	$HO_2^{\bullet} + HO_2^{\bullet} \rightarrow H_2O_2 + O_2$	$1.2 imes 10^7$
V	$HO_2^{\bullet} + H_2O_2 \rightarrow OH + O_2 + H_2O$	3.7
VI	$HO_2^{\bullet} + {}^{\bullet}OH \rightarrow O_2 + H_2O$	$7.5 imes 10^9$
2. DMSO d	lecomposition by •OH	
VII	$(CH_3)_2SO + {}^{\bullet}OH + 1.5O_2$	$6.6 imes 10^9$
	$\rightarrow \rightarrow \text{HCHO} + \text{CH}_3\text{SO}_2^- + \text{HO}_2^\bullet + \text{H}^+$	
3. Chain-ox	idation of methansulfinate	
VIII	$CH_3SO_2^- + {}^{\bullet}OH \rightarrow CH_3SO_2^\bullet + OH^-$	$5.3 imes 10^9$
IX	$CH_3SO_2^{\bullet} + O_2 \rightarrow CH_3S(O)_2O_2^{\bullet}$	$8.0 imes10^8$
Х	$CH_3S(O)_2O_2^{\bullet} + CH_3SO_2^{-} \rightarrow CH_3S(O)_2O^{\bullet} + CH_3SO_3^{-}$	$6.2 imes 10^8$
XI	$CH_3S(O)_2O^{\bullet} + CH_3SO_2^{-} \rightarrow CH_3SO_3^{-} + CH_3SO_2^{\bullet}$	$1.0 imes 10^{8\mathrm{a}}$
XII	$CH_3S(O)_2O^{\bullet} + CH_3SO_2^{-} \rightarrow 1.5O_2 + H_2O$	$3.0 imes 10^{7a}$
	$\rightarrow \rightarrow CH_3SO_3^- + HCHO + HSO_3^- + HO_2^{\bullet} + H^+$	
4. Oxidation	1 of methansulfonate	
XIII	$CH_3SO_3^- + {}^{\bullet}OH + 0.5O_2 + H^+ \rightarrow HCHO + HSO_3^- + H_2O$	$0.8 imes10^{7 m a}$
XIV	$HSO_3^- + H_2O_2 \rightarrow HSO_4^- + H_2O$	$pprox 1.0 imes 10^4$
5. Oxidation	ns of formaldehyde and formate	
XV	$HCHO + {}^{\bullet}OH + O_2 \rightarrow HCOO^- + HO_2^{\bullet} + H^+$	$1.0 imes10^9$
XVI	$HCOO^- + {}^{\bullet}OH + O_2 + H^+ \rightarrow HO_2^{\bullet} + H_2O + CO_2$	$3.0 imes 10^9$

^aDetermined in this study.

Proces UV/H₂O₂ – wpływ geometrii fotoreaktora

Fig. 1. Schematic representation of the annular UV (left) and cross-flow (right) photoreactors (dimensions are given in centimeters)

Fotoreaktor: (a) pierścieniowy; (b) poprzeczny

Proces UV/H₂O₂ – wpływ geometrii fotoreaktora

Fig. 2. Velocity vectors for: a) annular UV reactor and b) cross-flow UV reactor

Proces UV/H₂O₂ – wpływ geometrii fotoreaktora na dystrybucję promieniowania

Fig. 3. Fluence rate contours for: a) annular UV reactor and b) cross-flow UV reactor

Rozkład promieniowania (strumień promieniowania) (W/m² w przypadku reaktora: (a) pierścieniowego; (b) poprzecznego

Źródło promieniowania: Lampa UVC 484 W Obj. strumień przepływu: 2,1 m³/h Zawartość H₂O₂: 50 mg/l Założono transmitancję dla wody (254 nm)

Proces UV/H₂O₂ – wpływ geometrii fotoreaktora na dystrybucję H₂O₂

(a)

Stężenie H₂O₂ w
przypadku reaktora:
(a) pierścieniowego;
(b) poprzecznego

Spadek stężenia H₂O₂ wynika z rozkładu H₂O₂

Fig. 4. Molar concentration of H₂O₂ for: a) annular UV reactor and b) cross-flow UV reactor

Proces UV/H₂O₂ – wpływ geometrii fotoreaktora na dystrybucję rodników OH

Stężenie rodników OH w przypadku reaktora: (a) pierścieniowego; (b) poprzecznego

Stężenie jest wypadkową szybkości generowania oraz szybkości transportu poprzez reaktor

Proces UV/H₂O₂ – wpływ geometrii fotoreaktora na dystrybucję zanieczyszczeń

Stężenie TCEP w przypadku reaktora: (a) pierścieniowego; (b) poprzecznego

Proces UV/H₂O₂ – wpływ geometrii fotoreaktora na dystrybucję zanieczyszczeń

Fig. 7. Molar concentration of TBP for: a) annular UV reactor and b) cross-flow UV reactor.

Stężenie TBP w przypadku reaktora: (a) pierścieniowego; (b) poprzecznego

Proces UV/H₂O₂ – wpływ geometrii fotoreaktora na wydajność degradacji zanieczyszczeń

Zależność EEO (*electrical energy per contaminat degradation order*)

Czas zatrzymania w reaktorze poprzecznym jest większy niż w przypadku reaktora pierścieniowego – stąd zanieczyszczenia są degradowane bardziej efektywnie

$$O_3 + h\nu \longrightarrow O_2 + O(^1D)$$
$$O(^1D) + H_2O \longrightarrow H_2O_2 \longrightarrow (2^{\circ}OH)$$

Ozon absorbuje promieniowanie o długości fali 254 nm powodując formowanie H₂O₂

Niskociśnieniowe lampy rtęciowe emitują 80% promieniowania właśnie o tej długości fali

SPARTOX Ozone UV AOP System

Zalety/ograniczenia UV/O₃

- Degradacja związków organicznych poprzez utlenianie rodnikami OH, O₃ oraz w wyniku bezpośredniej fotolizy;
- Efektywność usuwania zanieczyszczeń zwykle wyższa niż w przypadku innych układów
- Trzeba zoptymalizować dawkę O₃ oraz natężenie promieniowania UV
- Gazowy ozon ma ograniczoną rozpuszczalność w wodzie (reakcja zachodzi na granicy faz)
- Absorpcja promieniowania UV spada wraz ze spadkiem transparentności oczyszczanej wody/ ścieków (UV pochłanianie m.in. przez azotany, związki żelaza)

Proces UV/O₃ vs proces UV/H₂O₂

Molowy współczynnik ekstynkcji Dla O₃: ε_{254} = 3300 M⁻¹·cm⁻¹ Dla H₂O₂: ε_{254} = 18,6 M⁻¹·cm⁻¹

Table 3. Formation of OH from photolysis of ozone and H₂O₂[2]

Oxidant	$^{\epsilon}_{254 \text{ nm}}, \text{M}^{-1} \text{ cm}^{-1}$	Stoichiometry	[•] OH formed per incident photon
$\begin{array}{c} H_2O_2\\ O_3 \end{array}$	20 3300	$\begin{array}{c} H_2O_2 \longrightarrow 2 \text{ OH} \\ 3O_3 \longrightarrow 2 \text{ OH} \end{array}$	0.09 2.00

Proces UV/O₃ vs proces UV/H₂O₂

Table 4. Comparative operating costs of some AOPs [2]

Process	Cost of oxidant	Cost of UV
O ₃ /UV	<u>High</u>	Medium
O ₃ /H ₂ O ₂	High	0
H ₂ O ₂ /UV	Medium	High
Photocatalytic oxidation	Very low	Medium to high

Oczyszczanie ścieków z produkcji wina (O₃; UV/O₃; O₃/H₂O₂/UV)

Table 1

Characterisation of the winery wastewater [21].

рН	Abs _{254 nm} (cm ⁻¹)	TC (mg L ⁻¹)	IC (mg L ⁻¹)	$COD (mg O_2 L^{-1})$	Polyphenols (mg _{gallic acid} L ⁻¹)
4.0	1.562	1255	1.11	4650	103

Fig. 1. Schematic representation of the pilot plant used in this study: [1] oxygen cylinder; [2] silica filter; [3] ozone generator; [4] flowmeter; [5] Drechsel bottle (In); [6] ozonation reactor; [7] UV-C lamp; [8] variable power transformer; [9] recirculation pump; [10] ozone monitor; [11] Dreschel bottle (out); [12] ozone destructor; [13] extractor; [14] ozone detector.

Oczyszczanie ścieków z produkcji wina (O₃; UV/O₃; O₃/H₂O₂/UV)

Table 3

Initial pseudo-first-order rate constants (k') obtained from COD removal, R^2 and %TOC removed after a reaction time of 300 min with ozone and ozone related AOPs at different initial pH.

Process	k' (min ⁻¹)	R ²	%TOC removed after 300 min
O ₃ (pH 4)	1.1×10^{-3}	0.994	4.4
O3 (pH 7)	1.1×10^{-3}	0.986	5.4
O ₃ (pH 10)	1.4×10^{-3}	0.989	7.9
O ₃ /UV (pH 4)	1.5×10^{-3}	0.997	8.5
O ₃ /UV (pH 7)	1.8×10^{-3}	0.986	13
O ₃ /UV (pH 10)	$1.9 imes 10^{-3}$	0.966	26
O ₃ /UV/H ₂ O ₂ (pH 4)	2.2×10^{-3}	0.983	49
O ₃ /UV/H ₂ O ₂ (pH 7)	2.2×10^{-3}	0.969	49
O ₃ /UV/H ₂ O ₂ (pH 10)	2.9×10^{-3}	0.979 🤇	64

Fig. 4. (a) COD profile during the $O_3/UV/H_2O_2$ treatment of winery wastewater. (b) Profile of pH. Experimental conditions from Tables 1 and 2. Liquid volume 9 L; COD/H₂O₂ (w/w) – 4; initial pH 4 (\blacksquare), 7 (\bullet) and 10 (\blacktriangle). Oczyszczanie ścieków z produkcji wina (O₃/H₂O₂/UV) – zmiana stężenia ChZT oraz zmiana pH

Oczyszczanie ścieków z produkcji wina (O₃; $UV/O_3; O_3/H_2O_2/UV)$

Table 4

Operating costs for the 9 L pilot-scale bubble column reactor operated for 5 h under the hydrodynamic conditions in Table 2.

Operating costs		Euro	
1 2 3 4 5	Cost of oxygen supply ^a Cost of electricity for ozone generation ^b Cost of electricity for UV-lamp operation ^c Cost of UV-lamp replacement ^d Cost of H ₂ O ₂ added (COD/H ₂ O ₂ – 4) ^e	0.03536 0.03942 0.01971 0.01250 0.00837	
Pilot plant operat	ting cost for each AOPs	Euro/m ³	
O ₃ (1+2) Euro/91 O ₃ /UV (1+2+3+ O ₃ /UV/H ₂ O ₂ (1+	L × 1000 L 4) Euro/9 L × 1000 L 2 + 3 + 4 + 5) Euro/9 L × 1000 L	8.31 11.89 12.82 ^t	najwyższy koszt ale tez najwyższa
a @ 0.025 Euro/k	σ ()_		wydajność

^a @ 0.025 Euro/kg O₂.

^b @ 0.1095 Euro/KWh, ozonator consumes 12 Wh/g ozone when fed with oxygen.

^c 36W nominal power.

- ^d @ 20 Euro/lamp, 8000 h lifetime.
- ^e @ 0.24 Euro/kg.

f 12.83 (COD/H₂O₂ - 2), 12.84 (COD/H₂O₂ - 1.3), 12.85 (COD/H₂O₂ - 1).

Oczyszczanie ścieków z produkcji wina (O₃; UV/O₃; O₃/H₂O₂/UV)

Koszt jednostkowy na jednostkę zmineralizowanego TOC

Table 5

Operating costs (Euro m⁻³ g⁻¹ of TOC mineralised) for each experiment.

Experiment	$TOC_0 (mgL^{-1})$	$COD/H_2O_2 (w/w)$	TOC removed in pilot plant (9 L) after 300 min (g)	Operating costs (Euro m ⁻³ g ⁻¹ of TOC mineralised)
O3 (pH 4)	1254	4	0.50	16.73
O ₃ (pH 7)	1254	4	0.61	13.63
O3 (pH 10)	1254	4	0.89	9.32
O ₃ /UV (pH 4)	1254	4	0.95	12.39
O ₃ /UV (pH 7)	1254	4	1.47	8.10
O ₃ /UV (pH 10)	1254	4	2.93	4.05
O ₃ /UV/H ₂ O ₂ (pH 4)	1254	4	5.53	2.32
O ₃ /UV/H ₂ O ₂ (pH 7)	1254	4	5.53	2.32
O ₃ /UV/H ₂ O ₂ (pH 10)	1254	4	7.22	1.77
O ₃ /UV/H ₂ O ₂ (pH 4)	1254	2	9.82	1.31
O ₃ /UV/H ₂ O ₂ (pH 4)	1254	1.3	9.14	1.40
O ₃ /UV/H ₂ O ₂ (pH 4)	1254	1	7.11	1.81
O ₃ /UV/H ₂ O ₂ (pH 4)	628	2	5.54	2.31
O ₃ /UV/H ₂ O ₂ (pH 4)	125	2	1.10 ^a	4.93

^a After 150 min.

Reakcja foto-Fentona

$$Fe^{3^{+}} + H_2O \longrightarrow Fe(OH)^{2^{+}} + H^{+}$$

$$Fe(OH)^{2^{+}} \stackrel{\longrightarrow}{\longleftarrow} Fe^{3^{+}} + OH^{-}$$

$$Fe(OH)^{2^{+}} \stackrel{hv}{\longrightarrow} Fe^{2^{+}} + OH^{-}$$

 $Fe(OH)^{2+} + h\nu \rightarrow Fe^{2+} + OH; \quad \lambda < 580 \text{ nm}$

 $H_2O_2 + h\nu \rightarrow 2 \cdot OH; \quad \lambda < 310 \text{ nm}$

- 1. Fotoredukcja Fe³⁺ do Fe²⁺
- **2.** Fotoliza H_2O_2

Reakcja foto-Fentona

Reakcja foto-Fentona system homogeniczny vs system heterogeniczny

Fotokataliza homogeniczna

- Nie ma ograniczeń wynikających z transferu masy!!
- Powyżej pH 4 powstaje osad Fe(OH)₃
- Odzysk katalizatora (Fe³⁺) nieopłacalny !!!
Reakcja foto-Fentona

Fig. 3. Solar CPC pilot plans located at Plataforma Solar de Almería (Almeria, Spain).

Reakcja foto-Fentona

Source	Water volume (CPC reactor)	Water matrix	Microbial target	Best operational conditions	
				[Fe] (mg L ⁻¹)	$[H_2O_2](mgL^{-1})$
[73]	20 L	River water	E. colt	0.6	10
[23]	80 L	Secondary effluents	Total coliforms	Fe2(SO4)3+: 5.58 +EDDS: 71.5	50
[184]	250 L	Secondary effluents	Antibiotic resistant (ofloxacine & Trimethoprim) Enterococci	Fe ²⁺ : 5	75
[93]	10L	Secondary effluents	E. colt, Spores of Sulphite Reducing Clostridia, Somatic coliphages, F-specific RNA bacteriophages	Fe ²⁺ :10	20
[17]	7 L	Synthetic Secondary effluents	E. faecalis	Fe ²⁺ :20	50
[22]	25 L	Well water	Total coliforms, E. coli, Salmonella spp	Natural Fe: 0.01 Fe oxides: 0.23	10
[20]	20 L	Real & Synthetic Secondary effluents	E. coli E. faecalis	Fe ²⁺ :10	50
[25]	60 L	Secondary effluents	Clostridium sp	Fe ²⁺ :10	140
[15]	25 L	Well water	Total coliforms, E. coli, Salmonella spp	Natural Fe: 0.01	10
[24]	7 L	Secondary effluents	Wild enteric E. colt and total coliform	Fe ²⁺ : 20	50
[108]	60 L	Secondary effluents	Antibiotic resistant (clarithromycin & sulfamethoxazole) Enterococci	Fe ³⁺ : 5.02 pH 4	160
[80]	60	Real and Synthetic Secondary effluents	Fusarium sp No inactivation at natural pH	Fe ²⁺ : 5	60
[107]	8.5 L	Real Secondary effluents	Multidrug resistant E. coll to ampicillin, ciprofloxacin & tetracycline	Fe ²⁺ : 5.02	10
[114]	25 L	Natural alkaline surface water	Wild total coliforms, E. colt Salmonella spp.	Total Fe: 0.10	10

Summary of articles on water disinfection by photo-Fenton at near-neutral pH carried out at solar pilot plant solar CPC reactors.

Reakcja foto-Fentona w płytkim zbiorniku (stawie)

Raceway pond

Characterization of the industrial effluent.

Parameter	Value
pH	8.7
Dissolved organic carbon (mg L ⁻¹)	12
Conductivity (mS cm ⁻¹)	5.2
Carbonate (mg L ⁻¹)	214
Chloride (mg L ⁻¹)	511
Nitrate (mg L^{-1})	2
Phosphate (mg L^{-1})	3
Sulphate (mg L^{-1})	1133

Reakcja foto-Fentona w płytkim zbiorniku (stawie)

Efektywność degradacji acetamipiridu (ACTM) oraz tiabendazolu (TBZ) w ściekach przemysłowych: (a) reakcja foto-Fentona (15 W/m²); oraz (b) reakcja Fentona. Stężenie początkowe ACTM oraz TBZ: 100µg/L, Fe²⁺: 25 mg/L; H₂O₂: 100 mg/L

Reakcja foto-Fentona

system heterogeniczny

No	Compound/initial amount (mgL ⁻¹)	Catalyst	Operationa	Operational condition				Optimal performance
			$[H_2O_2]$ (mgL ⁻¹)	[Cat] (mg L ⁻¹)	pН	T °C	$^{a}SAE/\lambda$ (W m ⁻² /nm)	
I	Methyl Violet (MV)/12.25	BiFeO3	680	50	5.0	25	>420	49.8% MV removal within 120 min in the dark, increased degradation up to 92% within 120 min in presence of light; 3.47 times increase in rate constants in photo-Fenton compared to Fenton.
	Rhodamine B (RhB)/4.8	BiFeO3	340	50	5.0	25	>420	70% RhB removal within 40 min in the dark; 1.95 times increase in rate constants in photo-Fenton compared to Fenton
3	Phenol/50	Fe-zeolites	100	20	7.0	35	>290/765	100% phenol degradation after 100 min of irradiation; 90% DOC removal after 80 min.
1	Imidacloprid/50	Fe-zeolites	100	20	7.0	35	>290/765	≈98% imidacloprid degradation after 420 min; 43% DOC removal after 800 min.
5	Dichloroacetic acid (DCAA)/50	Fe-zeolites	100	20	7.0	35	>290/765	65% DCAA degradation after 800 min; 63% DOC removal after 800 min.

Fotokataliza - podsumowanie

	1	11
Photochemical Process	Characteristics	Applications
Ozone and UV radiation (O ₃ /UV)	Generation of HO [•] radicals through photolysis of O ₃ by singlet oxygen ($\lambda < 310 \text{ nm}$) $O_3 + h\nu \rightarrow O_2 + O(^1D)$ $O(^1D) + H_2O \rightarrow 2HO^{\bullet}$ Molar extinction coefficient of O ₃ at 254 nm: 3300 mol ⁻¹ cm ⁻¹ Disadvantages: high operating costs	Elimination of organic contaminants in water. Disinfection of effluent waters. Disinfection and treatment of potable water.
Hydrogen peroxide and UV radiation (H ₂ O ₂ /UV)	Generation of HO [•] radicals through photolysis of H ₂ O ₂ (λ < 300 nm) $H_2O_2 + h\nu \rightarrow 2HO^{\bullet}$ Elevated photolysis at higher pH Disadvantages: elevated costs, low radical formation velocity through low molar extinction coefficient of H ₂ O ₂ : 18.7 mol ⁻¹ cm ⁻¹ at 254 nm	Elimination of organic contaminants in water. Disinfection of effluent waters. Disinfection and treatment of potable water. Taste and odour elimination. Treatment of industrial waste waters: textiles, agriculture, pharmaceuticals, leachate. Industrial applications.

Fotokataliza - podsumowanie

Ozone, hydrogen peroxide and UV radiation (O3/H2O2/UV)	Generation of HO [•] radicals through photolysis of H ₂ O ₂ ($\lambda < 310 \text{ nm}$) $O_3 + H_2O_2 + h\nu \rightarrow O_2 + HO^• + HO_2^*$ Disadvantages: elevated costs	Elimination of organic contaminants in water. Disinfection of effluent waters. Disinfection and treatment of potable water. Taste and odour elimination Treatment of industrial waste waters: textiles, agriculture, pharmaceuticals, leachate, etc. Industrial applications.
Photo-Fenton (Fe ²⁺ /H ₂ O ₂ /UV)	Photocatalytic system. Generation of HO* radicals, photocatalytic	Elimination of organic
(regeneration of Fe ²⁺	Treatment of industrial
	$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + HO^{\bullet} + HO^{-}$	waste waters: textiles,
	$Fe^{3+} + H_2O + h\nu \rightarrow Fe^{2+} + HO^{\bullet} + H^+$ Disadvantages: low pH (2.8-3) and	agriculture,
		pharmaceuticals,
		leachate, etc.
	cimination of renecessary	industrial applications