

ATTEMPTS OF SYNTHESIS OF DIOSGENYL *N*-(D-GLUCONYL)-2-AMINO-2-DEOXY**β-D-GLUCOPYRANOSIDE**

Monika Norkowska, Magdalena Cyman, Dominik Walczak, Damian Trzybiński, Artur Sikorski, Henryk Myszka and Beata Liberek

Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, POLAND e-mail: myszka@chem.univ.gda.pl

Dioscorea bulbifera

Naturally occurring diosgenyl glycosides belong to the group of saponins. These are steroid or triterpenoid glycosides, widely distributed in plants and in some marine organisms [1]. These glycosides display versatile biological activities, including antiinflammatory, antibacterial, antiparasitic, antifungal, and antitumor activities [2]. Previously, we reported the synthesis and apoptosis-inducing property in B cell chronic leukemia cells of diosgenyl 2-amino-2-deoxy-β-D-glucopyranoside hydrochloride [3]. This compound is also in vitro active and in vivo efficient against Grampositive cocci [4]. In search of its *N*-acyl derivatives with a hydrophilic chain we tried to synthesize diosgenyl *N*-(D-gluconyl)-2-amino-2-deoxy- β -D-glucopyranoside.

Dioscorea batatas

To synthesize diosgenyl N-(D-gluconyl)-2-amino-2-deoxy- β -D-glucopyranoside three approaches were tested. The first one consists in

condensation of diosgenyl 2-amino-2-deoxy- β -D-glucopyranoside (1) with D-gluconic acid (3) under typical for the liquid-phase peptide synthesis conditions (DIC/HOBT). Unfortunately, desired product 5 was not obtained. The second one consists in analogous reaction of diosgenyl glycoside 1 with 2,3,4,6-tetra-O-acetyl-D-gluconic acid (4). The latter was obtained according to Braun and Cook procedure [5]. Unfortunately, desired product 6 was also not obtained. The third one consists in condensation of diosgenyl 3,4,6-tri-O-acetyl-2-amino-2deoxy-β-D-glucopyranoside (2) with acid 4. This reaction gives diosgenyl 3,4,6-tri-O-acetyl-N-(2',3',4',6'-tetra-O-acetyl-D-gluconyl)-2-amino-2-deoxy-β-D-glucopyranoside (7, 17% yield), diosgenyl N-acetyl-3,4,6-tri-O-acetyl-2-amino-2-deoxy-β-D-glucopyranoside (8, 34%) yield) and not identified minor byproducts. Such the result indicates that intermolecular acetyl $O \rightarrow N$ migration occurs more willingly than coupling of amine 2 with acid 4.

Structures of the new compounds (7 and 8) were established on the basis of IR, 1 H and 13 C NMR spectroscopy and mass spectrometry. Additionally, crystal structure of the synthesized and used by us 2,3,4,6-tetra-O-acetyl-D-gluconic acid (4) is presented.

Chemical shifts (ppm) and $^{1}\text{H}-^{1}\text{H}$ coupling constants (Hz) in the ^{1}H NMR spectra of 7 and 8 (CDCl ₃).										•
	No						Cluconic acid and diosgenin residues			
	110.	H-1	H-2	H-3	H-4	H-5	H-6 _a	H-6 _b	OAc	NH

4.09 (dd)

 $J_{6a,6b} = 12.4$

Table 1.

3.70 (m)

 $J_{5,6a} = 2.4$ $J_{5,6b} = 4.8$

2.00-2.11 (4s, 4xOAc); 3.14 (d, OH); 3.83 (m, H-5'); 4.12 (m, 2xH-6'); 5.01 (m, H-4'); 5.15 (d, H-2'); 5.69 (dd, H-3');0.77 (s, H -18_d); 0.78 (d, H-27_d); 0.96 (d, H-21_d); 1.00 (s, H-19_d); 3.36 (t, H-26_d); 3.46 (dd, H-26_d); 3.49 (m, H-3_d); 4.40 (q, H-16_d); 5.28 $(\mathbf{A} \mathbf{H} \mathbf{G})$

									$(\mathbf{u}, \mathbf{n} - \mathbf{v}_{\mathbf{d}})$
8	4.84 (d) $J_{1,2}=8.4$	3.68 (m) $J_{2,3}=9.6$	5.03 (t) 5.37 (dd) $J_{3,4}=9.6$ $J_{4,5}=10.4$	$\begin{array}{c} 3.68 \text{ (m)} \\ J_{5,6a} = 2.8 \\ J_{5,6b} = 5.2 \end{array}$	4.10 (dd) $J_{6a,6b}$ =12.0	4.25 (dd) $J_{6a,6b}$ =12.0	2.01 (s) 2.02 (s) 2.06 (s)	5.46 (d) J _{2,NH} =8.4	1.95 (s, NAc); 0.78 (s, H-18 _d); 0.79 (d, H-27 _d); 0.96 (d, H-21 _d); 1.00 (s, H-19 _d); 3.37 (t, H-26 _d); 3.47 (dd, H-26 _d); 3.50 (m, H-3 _d); 4.40 (q, H-16 _d); 5.34 (d, H-6 _d)

2.00-2.11

(3s)

4.25 (dd)

 $J_{6a,6b} = 12.4$

Table 2.

4.86 (d)

 $J_{1,2}=8.4$

3.70 (m)

7

Chemical shifts (ppm) in the 13 C NMR spectra (CDCl₃) of 7.

5.01 (m) 5.38 (dd)

J_{3,4}=9.2

C-1	C-2	C-3	C-4	C-5	C-6	CH ₃ (OAc)	C=O(OAc)	C=O (amide)
98.66	55.78	71.05	71.82	72.09	62.51	20.76-21.05 (3C)	169.66- 171.36 (3C)	166.70

Fig. 1.

Structure of 2,3,4,6-tetra-*O*acetyl-D-gluconic acid (4) showing 25% probability displacements for ellipsoids.

Fig. 2. Molecular packing of 2,3,4,6-tetra-*O*-acetyl-D-gluconic acid (4) (view along c-axis).

Table 3.

6.25 (d)

 $J_{2,\rm NH} = 8.4$

Crystal data and structure refinement for 4.

Empirical formula	$C_{14}H_{22}O_{12}$
Formula weight	382.32
Temperature (K)	293(2)
Wavelength (Å)	0.71073
Crystal system	monoclinic
Space group	P2 ₁
Unit cell dimensions	a = 7.1732(4) Å b = 15.2991(8) Å c = 8.2095(4) Å $\alpha = 90^{\circ}; \beta = 94.976(5)^{\circ}; \gamma = 90^{\circ}$
$V(\text{\AA}^3)$	897.54(8)
Ζ	2
$D_{\text{calcd}} (\text{Mg m}^{-3})$	1.415
Absorption coefficient (mm ⁻¹)	0.126
F(000)	404
Θ Range for data collection (°)	3.62 - 25.05
Limiting indices	$-5 \le h \le 8; -17 \le k \le 18$ $-9 \le l \le 9$
Reflections collected/unique	5721/3118 [R _{int} =0.0269]

References

- 1. B. Yu, Y. Zhang, P. Tang, Eur. J. Org. Chem. 5245-5161, 2007.
- 2. S.G. Sparg, M.E. Light, J. van Staden, J. Ethnopharmacol. 94: 219-243, 2004.
- 3. H. Myszka, D. Bednarczyk, M. Najder, W. Kaca, Carbohydr. Res. 338: 133-141, 2003.
- 4. O. Cirioni, H. Myszka, et al., J. Med. Microbiol. 60: 1337-1343, 2011.

5. C.E. Braun, C.D. Cook, Org. Synth., Coll. 5: 887, 1973.

INNOVATIVE ECONOMY NATIONAL COHESION STRATEGY

This research was financed by the EU grant **UDA-POIG.01.01.02-14-102/09-03**

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND

