Wykład 3

Empiryczne pola siłowe, czyli co robić gdy chemia kwantowa jest za droga Dokładność opisu w zależności od rozmiaru układu i skali czasowej zjawisk

Hiperpowierzchnia energii potencjalnej w przybliżeniu Borna-Oppenheimera

Charakterystyka metod chemii kwantowej

Zalety:

- Możliwość badania zarówno reakcji chemicznych jak i przemian konformacyjnych.
- Uniwersalność.
- Wysoka wiarygodność wyników.

<u>Wady:</u>

- Energia jest niejawną funkcją współrzędnych.
- Wysoki lub bardzo wysoki koszt obliczeń.

Empiryczne pola siłowe: przybliżone analityczne wyrażenia na energię potencjalną cząsteczki (cząsteczek) poprzez wielkości geometryczne wraz z odpowiednimi parametrami.

Cząsteczka jest traktowana jako układ kulek połączonych sprężynkami.

Charakterystyka empirycznych pól siłowych

Zalety:

- Energia jest jawną funkcją współrzędnych.
- Niski koszt obliczania energii.

<u>Wady:</u>

- Umożliwiają badanie jedynie przemian konformacyjnych i oddziaływań niekowalencyjnych.
- Mogą być stosowane tylko w klasie związków na które je sparametryzowano (nieprzenaszalność).
- Niska wiarygodność obliczonych energii.

Zastosowania empirycznych pól siłowych

- Mechanika molekularna (znajdowanie stabilnych konformacji)
- Metody Monte Carlo (znajdowanie średnich, badanie termodynamiki układu)
- Dynamika molekularna (badanie ewolucji czasowej cząsteczki lub układu cząsteczek, znajdowanie średnich, badanie termodynamiki układu)

Wybór zmiennych

- Współrzędne kartezjańskie
 - pola MM Allingera (węglowodory, alkohole, estry)
 - AMBER (biomolekuły)
 - CHARMM (biomolekuły)
 - CFF (biomolekuły)
 - XPLOR (udokładnianie struktur krystalograficznych)
- Kąty dwuścienne
 - ECEPP (peptydy i białka)

Pola siłowe zwykle do symulacji biomolekuł

Nazwa	Charakterystyka	Literatura
AMBER/OPLS	pełnoatomowe, atomy zjednoczone	Weiner et al., 1984; 1986; Cornell et al., 1995; Jorgensen et al., 1996 http://ambermd.org/
CHARMm	pełnoatomowe	Brooks et al., 1983; MacKerrel et al., 1998; 2001 http://www.charmm.org/
GROMOS	pełnoatomowe	van Gunsteren & Berendsen, 1987; Scott et al., 1999 http://www.gromos.net/
ECEPP/3	pełnoatomowe; sztywna geometria walencyjna	Nemethy et al., 1995; Ripoll et al., 1995 http://cbsu.tc.cornell.edu/software/ecep pak/ http://www.icm.edu.pl/kdm/ECEPPAK
DISCOVER (CVFF)	pełnoatomowe	Dauber-Osguthorpe, 1988; Maple et al., 1998

Podział energii oddziaływań w mechanice molekularnej ze względu na topologiczną odległość atomów

Typy atomów w emipirycznych polach siłowych

Typ atomu zależy nie tylko od jego położenia w układzie okresowym ale także od otoczenia

Wyrażenie na energię konformacyjną w empirycznych polach siłowych

Energia odkształcenia wiązania

Typowe wartości stałych d^0 i k^d

Wiązanie	d^0 [A]	$k^d [\text{kcal/(mol A^2)}]$
Csp ³ -Csp ³	1.523	317
Csp ³ -Csp ²	1.497	317
Csp ² =Csp ²	1.337	690
Csp ² =O	1.208	777
Csp ² -Nsp ³	1.438	367
C-N (amid)	1.345	719

Porównanie krzywej energii potencjalnej cząsteczki wodoru z krzywą odpowiadającą energii odkształcenia wiązania H-A w mechanice molekularnej

Potencjały które uwzględniają asymetrię krzywych energii wiązań

$$E_{s}(d) = \frac{1}{2}k^{d}(d-d^{0})^{2} - \frac{1}{6}\kappa(d-d^{0})^{3}$$
$$E_{s}(d) = D_{e}\left[\left(1 - e^{-b(d-d_{e})}\right)^{2} - 1\right]$$

potencjał anharmoniczny

potencjał Morse'a

Potencjał harmoniczny Potencjał anharmoniczny Potencjał Morse'a

Energia odkształcenia kąta walencyjnego

Typowe wartości stałych θ^{0} i k^{θ}

Kąt	θ^{p} [stopnie]	$k^{ heta}$
		[kcal/(mol stopień ²)]
Csp ³ -Csp ³ -Csp ³	109.47	0.0099
Csp ³ -Csp ³ -H	109.47	0.0079
H-Csp ³ -H	109.47	0.0070
Csp ³ -Csp ² -Csp ³	117.2	0.0099
Csp ³ -Csp ² =Csp ²	121.4	0.0121
Csp ³ -Csp ² =O	122.5	0.0101

Potencjał niewiążący Lennarda-Jonesa (6-12)

Przykładowe parametry ε_i i r_i^0

Typ atomu	r^0	ε
C(karbonyl)	1.85	0.12
$C(sp^3)$	1.80	0.06
$N(sp^3)$	1.85	0.12
O(karbonyl)	1.60	0.20
H(związany z C)	1.00	0.02
S	2.00	0.20

Inne potencjały niewiążące

$$E_{nb}(r) = A \exp\left(-\frac{r}{\rho}\right) - \frac{C}{r^6}$$

Potencjał Buckinghama

$$E_{hb}(r) = \frac{C}{r^{12}} - \frac{D}{r^{10}}$$

Potencjał 10-12 używany w niektórych polach siłowych do opisu wiązań wodorowych

Energia oddziaływań elektrostatycznych

 $E_{el} = \sum_{i} \sum_{j < i} 332 \frac{q_i q_j}{Dr_{ij}}$

 E_{el} i E_{nb} NIE OBLICZAMY dla par atomów związanych albo dołączonych do wspólnego atomu. Energia tych oddziaływań jest opisywana przez E_s (energia odkształcenia wiązań) i E_b (energia odkształcenia kątów walencyjnych).

Podstawowe typy potencjałów torsyjnych

Pojedyncze wiązanie pomiędzy atomami węgla lub węgla sp³ i azotu sp³.

Przykład: ugrupowanie C-C-C-C

$$E_{tor}(\tau) = 1.6 [1 + \cos 3\tau]$$

Wiązania podwójne lub częściowo podwójne. Przykład: ugrupowanie C-C=C-C

$$E_{tor}(\tau) = 30 [1 - \cos 2\tau]$$

Wiązanie pojedyncze między atomami elektroujemnymi.

Przykład: ugrupowanie C-S-S-C

 $E_{tor}(\tau) = 3.5[1 + \cos 2\tau] + 0.6[1 + \cos \tau]$

Pochodzenie trójkrotnej bariery obrotu wokół wiązań pojedynczych

Pochodzenie bariery obrotu wokół wiązania podwójnego

H H

Wiązanie nieobrócone Stan zamkniętopowłokowy (para wiążąca elektronów π)

Obrót o 90° Stan otwartopowłokowy (2 niesparowane elektrony)

Pochodzenie bariery obrotu wokół wiązań pomiędzy atomami elektroujemnymi

Porównanie krzywych energii torsyjnej disiarczku dimetylu obliczonych metodą ab initio mechaniki kwantowej oraz na podstawie modelu elektrostatycznego

Figure 4. Torsional barriers for CH_3S —SH obtained from Eq. (1) up to R^{-5} with the use of CAMM for all atomic centers (...) and S—S only (—). Cumulative atomic multipoles taken from equilibrium CH_3S —SCH₃ conformer.

Sokalski et al., Int. J. Quant. Chem., 1991, 18, 61-71

Potencjały "niewłaściwych" kątów torsyjnych

Źródła parametrów empirycznych pól siłowych

Wkład do energii	Źródła parametrów
Odkształcenia wiązań i	Dane krystalograficzne i
kątów walencyjnych	neutronograficzne, spektroskopia IR
Energia torsyjna	Spektroskopia NMR i FTIR
Energia oddziaływań	Polaryzowalności, dane
niewiążących	krystalograficzne i neutronograficzne
Energia	Molekularne potencjały
elektrostatyczna	elektrostatyczne
Wszystkie	Powierzchnie energii układów modelowych obliczone metodami chemii kwantowej

Uwzględnienie rozpuszczalnika

- Modele dyskretne wody
 - TIP3P
 - TIP4P
 - TIP5P
 - SPC
- Modele ciągłe wody
 - modele powierzchni dostępnej dla rozpuszczalnika
 - modele powierzchni molekularnej
 - uogólniony model Borna
 - model PCM).

Model TIP3P

Model TIP4P

$$\sigma_0$$
=3.1507 Å
 ϵ_0 =0.1521 kcal/mol

 σ_0 =3.1535 Å ϵ_0 =0.1550 kcal/mol

Model powierzchni dostępnej dla rozpuszczalnika (SASA; solvent-accessible surface area)

$$F_{solw} = \sum_{atomy} \sigma_i A_i$$

energia swobodna solwatacji atomu *i* na jednostkę powierzchni,

 A_i

powierzchnia atomu *i* dostępna dla rozpuszczalnika

		Envelope model			
		SRFOPT		ZRSS	
	Atom type	Radius (Å)	σ^{\dagger}	Radius (Å)	σ^{\dagger}
1	Hydroxyl, carboxyl H	2.40	0.0498	1.00	0.312
2	Amine, or amide H	2.40	-0.00830	1.00	-0.00829
4	Thiol H	1.40	0.000453	0.00	0.000453
5	Aliphatic CH ₃	3.59	0.00119	2.200	0.00984
6	Aliphatic CH_2	3.59	-0.00154	2.200	0.00505
7	Aliphatic CH	3.56	0.0321	2.161	0.0375
8	Aliphatic or alicyclic C	3.53	0.000448	2.13	0.00630
9	Alicyclic CH ₂ or CH	3.59	-0.0301	2.19	-0.0440
10	Aromatic CH	3.50	-0.00510	2.10	-0.00837
11	Aromatic C	0.946	-0.137	2.10	-0.0996
12	Aromatic C of fused ring	3.50	-0.0917	2.10	-0.0942
13	Aromatic CH of fused ring	3.56	0.0219	2.16	0.0472
14	Carbonyl or carboxylic C	3.50	0.162	2.10	0.573
15	N of primary amine	3.22	-0.105 (1.82	-0.289
17	N of secondary amine	3.22	-0.364	1.82	-0.637
19	N of cyclic amine	3.22	-0.228	1.82	-0.493
20	N of aromatic system	3.22	-0.171	1.82	-0.365
22	N of amide	3.22	-0.142	1.82	-0.439
23	Ether or hydroxyl O	3.12	-0.125	1.72	-0.329
24	Carboxylic O	3.06	-0.116	1.66	-0.409
25	Carbonyl O of ester	3.06	-0.151	1.66	-0.637
26	Amide carbonyl O	3.06	-0.138	1.66	-0.560
28	Thiol or sulfide S	3.39	-0.0216	1.99	-0.0716

 TABLE Ib. Radii and Solvation Parameters for the SRFOPT and ZRSS Hydration Models*

*The numbering of the atom types is that of Kang et al.⁶ Types 3, 18, 21, and 27 are used for charged species. No charged species were used in the present work.

[†]Atomic solvation parameter (kcal/mol/Å²).

Vila et al., Proteins: Structure, Function, and Genetics, 1991, 10, 199-218.

Porównanie konformacji [Met5]enkefaliny uzyskanej przy pomocy pola siłowego ECEPP/3 w próżni i w wodzie

Woda (model SRFOPT)

Próżnia

Model powierzchni molekularnej (molecular surface area)

 $F_{cav} = \sigma A$

- napięcie powierzchniowe rozpuszczalnika
 - powierzchnia molekularna

Uogólniony model Borna i powierzchni molekularnej (GBSA; Generalized Born Surface Area model)

$$F_{solw} = F_{cav} + E_{pol}^{GB}$$
$$E_{pol}^{GB} = -332q_i q_j \left(\frac{1}{\varepsilon_{in}} - \frac{1}{\varepsilon_{out}}\right) \frac{1}{f_{GB}(r_{ij})}$$

$$f_{GB}(r_{ij}) = \sqrt{r_{ij}^2 + R_i R_j \exp\left(-\frac{r_{ij}^2}{4R_i R_j}\right)}$$