

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Course title	ECTS code
Experimental methods for studying chemical equilibria in aqueous	13.3.1218
solutions	

Name of unit administrating study

null

Studies

faculty	field of study	type	drugiego stopnia
Wydział Chemii	Biznes chemiczny	form	stacjonarne
		specialty	wszystkie
		specialization	wszystkie
Wydział Chemii	Chemia	type	drugiego stopnia
		form	stacjonarne
		specialty	wszystkie
		specialization	wszystkie
Wydział Chemii	Ochrona środowiska	type	drugiego stopnia
		form	stacjonarne
		specialty	wszystkie
		specialization	wszystkie

Teaching staff

dr hab. Dariusz Wyrzykowski

Forms of classes, the realization and number of hours	ECTS credits
Forms of classes	4
Laboratory classes	classes - 30 h
The realization of activities	tutorial classes - 30 h
classroom instruction	student's own work - 40 h
Number of hours	TOTAL: 100 h - 4 ECTS
Laboratory classes: 30 hours	

The academic cycle

2024/2025 winter semester

Type of course	Language of instruction
an elective course	English
Teaching methods	Form and method of assessment and basic criteria for eveluation or examination requirements
Lecture with the use of the multimedia presentation;	Final evaluation
Practical laboratory work – chemical experiments,	Graded credit
analysis of obtained results and discussion.	Assessment methods
	Assessment methods
	reports and short tests
	The basic criteria for evaluation
	Laboratory classes: a positive note from all short tests and reports; final note is an
	average from notes from tests and reports:
	91-100%: 5.0
	81-90%: 4.5
	71-80%: 4.0
	61-70%: 3.5
	51-60%: 3.0
Mothod of varifying required learning outcomes	< 51%: 2.0

Method of verifying required learning outcomes

Required courses and introductory requirements

A. Formal requirements

lack

B. Prerequisites

lack

Aims of education

presenting basic issues in solution chemistry presenting the basis of chemical calculations

familiarize students with the basic and more advanced aspects of chemical equilibria in aqueous solutions

familiarize students with the commonly used experimental methods and data processing

Course contents

The set of physico-chemical experiments includes 10 laboratory classes thematically related to chemical equilibria in aqueous solutions. The course is intended to familiarize students with the commonly used experimental methods, namely potentiometry and conductometry as well as an advanced method, namely isothermal titration chemistry for studying chemical equilibria, designing experiments, calculations as well as presentation of the obtained results.

Bibliography of literature

Extracurricular readings

Robert de Levie, How to Use Excel® in Analytical Chemistry And in General Scientific Data Analysis, Cambridge University Press (2001) Jean-Louis Burgot, Ionic Equilibria in Analytical Chemistry, Springer Science+Business Media (2012)

Brian M. Tissue, Basics of Analytical Chemistry and Chemical Equilibria, John Wiley & Sons, Inc. (2013)

The learning outcomes (for the field of study and specialization)

Chemical Business:

K_BChII_W01

knows and understands in-depth complex physicochemical processes and is able to analyse their coursee in connection with other fields of science

K_BChII_W02

knows and understands the axiological conditions regarding the use of modern techniques and measuring instruments as well as IT tools in chemistry, taking into account economic aspects K_BChII_U01

is able to based on the acquired knowledge, propose a solution to problems in chemistry, taking into account the economic aspect, using advanced measurement and analytical techniques K_BChII_U02

is able to define his/her interests, develop them within the chosen field of study and in connection with the subject of the master's thesis by implementing the process of self-education and planning his/her professional career K_BChII_K01

is willing to develop and disseminate appropriate best practices in the workplace and beyond

K_BChII_K02

is willing to create and manage group work plans and take responsibility for the work of the entire team, properly assessing his/her own work and that of individual team members

Chemistry:

K_W03

demonstrates in-depth knowledge in the field of modern measuring techniques used in chemical analysis

K_W03

applies mathematics to the extent necessary to understand, describe and model chemical processes of extended complexity

K_W10

uses knowledge of the principles of operation of the scientific and research apparatus used in chemistry

Knowledge

Students know the commonly used experimental methods for studying chemical equilibria in aqueous solutions

Skills

Students: design experiments, process experimental data as well as present the obtained results; interpret and analyze information connected with chemistry presented as text, tables, plots, schemes, figures; formulate descriptions of different chemical phenomena and processes, describe them with use of own words and figures (schemes); notice causal links in chemical processes performed in different conditions, where typical chemical reactions occur; explain course of different phenomena from everyday life with the use of chemical knowledge in correlation with other sciences; interpret information, formulates conclusions and explain opinions

Social competence

Students: understand need for learning, inspire other for learning; cooperate in group, taking different roles; exhibit creativity in determination of priorities necessary for realization of different tasks; understand social aspects of practical use of knowledge and abilities as well as connected with them responsibility.

K_U01

plans and implements chemical experiments of extended

K_U02

critically assesses the results of conducted, performed observations and theoretical calculations and discusses errors

K_U04

applies acquired knowledge of chemistry and related scientific disciplines

K_K02

works in a team taking on various roles in it **Environmental Protection:**

K OŚII W09

applies safety and hygiene principles when working independently on a test or measurement stand in a laboratory or in the field

K_OŚII_U07

has advanced skills in presenting the results of their own research, discussions based on literature data and public speaking, including leading a debate

K_OŚII_K02

recognises threats, creates safe work conditions and is responsible for the safety of own and other people's work K_OŚII_K07

is willing to undertake individual and team activity; to professionally plan and organise its course and set priorities for their actions

K_OŚI_K08

is responsible for and takes care of the specialist equipment entrusted to her/him for research and laboratory or field work

Contact

dariusz.wyrzykowski@ug.edu.pl