

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Course title ECTS	S code
Designing with elements of rapid 3D prototyping 13.	3.3.1216

Name of unit administrating study

null

Studies

faculty	field of study	type	drugiego stopnia
Wydział Chemii	Biznes chemiczny	form	stacjonarne
		specialty	wszystkie
		specialization	wszystkie
Wydział Chemii	Chemia	type	drugiego stopnia
		form	stacjonarne
		specialty	wszystkie
		specialization	wszystkie
Wydział Chemii	Ochrona środowiska	type	drugiego stopnia
		form	stacjonarne
		specialty	wszystkie
		specialization	wszystkie

Teaching staff

dr inż. Paweł Mazierski

Forms of classes, the realization and number of hours	ECTS credits
Forms of classes	4
Laboratory classes	classes - 30 h
The realization of activities	tutorial classes - 30 h
classroom instruction	student's own work - 40 h
Number of hours	TOTAL: 100 h - 4 ECTS
Laboratory classes: 30 hours	

The academic cycle

2024/2025 winter semester

Type of course	Language of instruction		
an elective course	English		
Teaching methods - critical incident (case) analysis - designing experiments - discussion - group work	Form and method of assessment and basic criteria for eveluation or examination requirements		
	Final evaluation		
	Graded credit		
	Assessment methods		
	assignment work – project or presentation		
	The basic criteria for evaluation		
	Performance of specific practical work (project) and presentation of the project, positive		
	note from all parts of a project. Assessment criteria in accordance with the University of		
	Gdansk Study Regulations.		

Method of verifying required learning outcomes

Required courses and introductory requirements

A. Formal requirements

lack

B. Prerequisites

lack

Aims of education

Designing with elements of rapid 3D prototyping. The course aims to provide the fundamental knowledge of the design, prototyping and fabrication of

Designing with elements of rapid 3D prototyping #13.3.1216

Sylabusy - Centrum Informatyczne UG Dział Kształcenia

chemical apparatus using 3D printing technology.

Course contents

The student will get acquainted with the necessary steps to finalize a product, which helps in realization of a conceptual design. The student will learn all the steps to be taken from the idea to its finalization as well as the software for creating 3D models. Finally, the course includes the production of small laboratory equipment using a 3D printer.

Bibliography of literature

Literature required to pass the course

Kamrani, Ali K.; Nasr, Emad Abouel - Rapid Prototyping - theory and practice

Extracurricular readings

Bhowmik, Sumit - Modeling and Optimization of Advanced Manufacturing Processes

The learning outcomes (for the field of study and specialization)

Chemical Business:

K_BChII_W02 knows and understands the axiological conditions regarding the use of modern techniques and measuring instruments as well as IT tools in chemistry, taking into account economic aspects

K_BChII_W08 knows and understands basic principles of creation, operation and development of various forms of entrepreneurship, with particular emphasis on the chemical industry

K_BChII_U04 is able to independently plan and perform specific research tasks in the field or in the laboratory, interpret their results working individually or in a team, assuming various roles and functions in it

K_BChII_U08 is able to define his/her interests and develop them within the selected subject of the master's thesis, while implementing the process of self-education and planning his/her future career

K_BChII_K03 is willing to critically assess the level of his/her own knowledge in the light of the achievements of the studied scientific discipline

K_BChII_K04 is willing to properly assess the acquired knowledge, respect it and disseminate it in order to solve specific cognitive and practical issues

Chemistry:

K_W05 has extended knowledge in the field of the specialization studied

K_W10 uses knowledge of the principles of operation of the scientific and research apparatus used in chemistry K_U03 finds necessary information in specialist literature, databases and other sources, lists basic scientific journals

in chemistry

K_U09 has deepened ability to prepare various forms of oral presentations on chemistry in Polish and English

K_K01 knows the limitations of her/his own knowledge; understands the need for further education and can inspire other people to do so

K_K03 understands the need for systematic work on various projects of a long-term nature and knows how to set priorities for the implementation of undertaken tasks K_K06 undertakes research tasks consciously and responsibly, understanding the social aspects of the practical application of the acquired knowledge and skills

Environmental Protection:

and the responsibility related to it

K_OŚII_W04 chooses methods, techniques and research tools used in environmental protection

K_OŚII_W09 applies safety and hygiene principles when

Knowledge

knows the rules of technical drawing knows the engineering software for design and 3D modeling lists the components of a 3D printer is able to work in the concept design system

Skills

uses engineering terminology, uses engineering software for 3D modeling, prepares technical documentation, analyzes the 3D models in terms of the possibility of producing designed objects

Social competence

Students: understand need for learning, inspire other for learning; cooperate in group, taking different roles; exhibit creativity in determination of priorities necessary for realization of different tasks; understand social aspects of practical use of knowledge and abilities as well as connected with them responsibility.

Designing with elements of rapid 3D prototyping #13.3.1216

Sylabusy - Centrum Informatyczne UG Dział Kształcenia

working independently on a test or measurement stand in a laboratory or in the field

K_OŚII_U07 has advanced skills in presenting the results of their own research, discussions based on literature data and public speaking, including leading a debate

K_OŚII_K02 recognizes threats, creates safe work conditions and is responsible for the safety of own and other people's work

K_OŚII_K05 critically assesses her/his own knowledge and the knowledge of the teams in which s/he works, can critically assess the content received

K_OŚII_K07 is willing to undertake individual and team activity; to professionally plan and organize its course and set priorities for their actions

Contact

pawel.mazierski@ug.edu.pl