

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Course title	ECTS code	
Application of spectroscopy in bioinorganic chemistry	13.3.1213	
Name of unit administrating study		
null		
044!		

Studies

faculty	field of study	type	drugiego stopnia
Wydział Chemii	Biznes chemiczny	form	stacjonarne
		specialty	wszystkie
		specialization	wszystkie
Wydział Chemii	Chemia	type	drugiego stopnia
		form	stacjonarne
		specialty	wszystkie
		specialization	wszystkie
Wydział Chemii	Ochrona środowiska	type	drugiego stopnia
		form	stacjonarne
		specialty	wszystkie
		specialization	wszystkie

Teaching staff

prof. UG, dr hab. Agnieszka Chylewska

Forms of classes, the realization and number of hours	ECTS credits
Forms of classes	2
Laboratory classes	classes – 15 hours
The realization of activities	tutorial classes – 10 hours
classroom instruction	student's own work – 25 hours
Number of hours	Total: 50 h – 2 ECTS
Laboratory classes: 15 hours	

The academic cycle

2024/2025 winter semester

2024/2025 Wiffler Semester	
Type of course	Language of instruction
an elective course	English
Teaching methods	Form and method of assessment and basic criteria for eveluation or examination requirements
an individual work, experiments and measurements performing and an analysis of obtained results and discussion.	Final evaluation
	Graded credit
	Assessment methods
	Students write 4 short tests (Pre-Lab Test) and 4 detailed reports (Post-Lab Report)
	The basic criteria for evaluation
	positive note from all short tests and reports, final note is an average from notes from all
	tests
	91-100%: 5.0
	81-90%: 4.5
	71-80%: 4.0
	61-70%: 3.5
	51-60%: 3.0

< 51%: 2.0

Method of verifying required learning outcomes

Required courses and introductory requirements

A. Formal requirements

lack

Application of spectroscopy in bioinorganic chemistry #13.3.1213

Sylabusy - Centrum Informatyczne UG Dział Kształcenia

B. Prerequisites

lack

Aims of education

to give the students an idea of the importance and significance of chemistry in our lives and body;

to develop specific interests, habits, and abilities encompassing all sciences;

to help the student discover whether he/she has an aptitude for further work in pure or applied sciences and to induce such people to continue science studies

Course contents

Topics of the lecture:

safety practices and basic laboratory (filtration, crystallization, distillation, extraction, chromatography) and instrumental techniques (UV, ATR, IR, NMR spectroscopy) in chemistry

chemical kinetics and equilibria (the effect of certain factors on the reaction rate, type of catalysts, the significance of the equilibrium constant, determining the effect of certain factors on the equilibrium)

solutions (types of solutions and solubility, factors affecting the solubility of compounds, calibration plots, expressing solution concentration, solubility equilibria and solubility product constant, stability of complexes, relative strengths of oxidizing and reducing agents, relative reactivities of coordination compounds)

acid-base equilibria (the nature of acids and bases, acid strength and the acid ionization constant, autoionization of water and pH, buffers and their effectiveness, titrations and pH curves; reduction and oxidation processes in acidic and basic solutions)

Bibliography of literature

I. Bertini, D. Garner, S.J. Lippard. J. Reedijk, A.X. Trautwein, M.J. Clarke, E. Kimura, K.N. Raymond, P.J. Sadler, R. Weiss, "Topics in BiologicalInorganic Chemistry" Volume 1, Springer, 1-200, 1999.

R. S. Mikkelsen, E. Corton, "Bioanalytical Chemistry" Wiley-Interscience, 1-375, 2004.

G. A. Lawrance, "Introduction to Coordination Chemistry", University of Newcastle, Callaghan, NSW, Australia A John Wiley, 1-307, 2010.

G.E. Rodgers, "Descriptive Inorganic, Coordination, and Solid-State Chemistry, Third Edition" Belmont, Brooks Cole, USA, 1-668, 2012.

The learning outcomes (for the field of study and specialization)

Chemical Biznes

K_BChII_W01

knows and understands in-depth complex physicochemical processes and is able to analyse their coursee in connection with other fields of science

K BChII U04

is able to independently plan and perform specific research tasks in the field or in the laboratory, interpret their results working individually or in a team, assuming various roles and functions in it

K_BChII_K04

is willing to properly assess the acquired knowledge, respect it and disseminate it in order to solve specific cognitive and practical issues

Chemistry

K_W01

uses in-depth knowledge of spectroscopic methods of chemical compound analysis

K U05

presents the results of research in the form of an independently written paper containing a description and justification of the purpose of the work, adopted methodology, results and their significance in comparison to other similar research

Knowledge

Students will be able to:

integrate theory and practice to solve qualitative and quantitative problems relating to familiar and unfamiliar aspects of chemistry,

integrate information or data from a variety of sources,

appreciate the need for good practice in data collection and processing

Skills

Students will be able to:

-understand the objective of their chemical experiments, properly carry out the experiments, and appropriately record and analyze the results,

be able to use standard laboratory equipment, modern instrumentation, and classical techniques to carry out experiments,

know and follow proper procedures and regulations for safe handling and use of chemicals.

communicate the concepts and results of their laboratory experiments through effective writing and oral communication skills.

Social competence

Students will be able to:

work effectively in diverse teams both in the classroom and in the laboratory, employ critical thinking and efficient problem-solving skills,

conduct experiments, analyse data, and interpret results, while observing the rules of responsible and ethical scientific conduct;

develop effective written and oral communication skills, especially the ability to convey complex technical information in a clear and concise manner.

Application of spectroscopy in bioinorganic chemistry #13.3.1213

Sylabusy - Centrum Informatyczne UG

K_K06

undertakes research tasks consciously and responsibly, understanding the social aspects of the practical application of the acquired knowledge and skills and the responsibility related to it

Environmental Protection

K OŚII W04

chooses methods, techniques and research tools used in environmental protection

K_OŚII_U03

plans and performs research tasks in the field or laboratory and interprets research results on environmental issues (working individually or in a team assuming various roles, including managerial functions)

K_OŚII_K02

recognises threats, creates safe work conditions and is responsible for the safety of own and other people's work

Contact

agnieszka.chylewska@ug.edu.pl