

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Course title	ECTS code	
Material engineering	13.3.1221	

Name of unit administrating study

null

Studies

faculty	field of study	type	drugiego stopnia
Wydział Chemii	Biznes chemiczny	form	stacjonarne
		specialty	wszystkie
		specialization	wszystkie
Wydział Chemii	Chemia	type	drugiego stopnia
		form	stacjonarne
		specialty	wszystkie
		specialization	wszystkie
Wydział Chemii	Ochrona środowiska	type	drugiego stopnia
		form	stacjonarne
		specialty	wszystkie
		specialization	wszystkie

Teaching staff

dr inż. Anna Gołąbiewska; dr inż. Aleksandra Pieczyńska; dr inż. Joanna Nadolna; dr inż. Anna Malankowska; dr inż. Beata Baiorowicz

Bajorowicz		
Forms of classes, the realization and number of hours	ECTS credits	
Forms of classes	4	
Laboratory classes, Lecture	classes - 30 h	
The realization of activities	tutorial classes - 30 h	
classroom instruction	student's own work - 40 h	
Number of hours	TOTAL: 100 h - 4 ECTS	
Lecture: 15 hours, Laboratory classes: 15 hours		

The academic cycle

2024/2025 winter semester

Type of course	Language of instruction
an elective course	English
Teaching methods	Form and method of assessment and basic criteria for eveluation or
- Lecture with the use of the multimedia presentation	examination requirements Final evaluation
on functional engineering materials and their	Graded credit
applications. Students will acquire knowledge on the	Assessment methods
interrelations between the manufacturing methods,	exam with open question
structure and properties of materials and unique	The basic criteria for evaluation
properties possible to develop by novel	Lecture: positive note from an exam with open questions.
manufacturing and/or processing techniques. The	Laboratory classes: positive note from all short tests and reports. Assessment criteria in
application area covers electronics, photonics,	accordance with the University of Gdańsk Study Regulations.
energy storage and conversion, heterogeneous	
photocatalysis, health care, as well as sensing	
devices.	
- Practical laboratory work- manufacturing new	
materials and characterization methods	
Method of verifying required learning outcomes	

Required courses and introductory requirements

A. Formal requirements

lack

B. Prerequisites

lack

Aims of education

To acquaint students with the production, characteristics, and applications of engineering materials.

Course contents

Topic of the lecture

Definitions and classification of engineering, functional materials, the building of engineering materials, structure and characterization of engineering materials, sustainable development of engineering materials, Application of engineering materials in electronics, photonics, energy storage and conversion, heterogeneous photocatalysis, health care, as well as sensing devices.

Topics of laboratory classes: manufacturing new materials and characterization methods

Bibliography of literature

Literature required to pass the course

W. L. Wiese, George Murray, Charles V. White - Introduction to Engineering Materials

Extracurricular readings

Zaleska-Medynska - Metal Oxide-Based Photocatalysis: Fundamentals and Prospects for Application

The learning outcomes (for the field of study and specialization)

Chemical Business:

K_BChII_W01 knows and understands in-depth complex physicochemical processes and is able to analyse their course in connection with other fields of science

K_BChII_W06 knows and understands tasks in the field of chemistry, environmental protection and economics that are the subject of human activity to a degree that allows independent work on a research, scientific and measurement position

K_BChII_U03 is able to present, based on the current state of knowledge, scientific discoveries and the results of own research in the field of chemical and economic sciences, through skilful debate and public speeches

K_BChII_U04 is able to independently plan and perform specific research tasks in the field or in the laboratory, interpret their results working individually or in a team, assuming various roles and functions in it

K_BChII_U07 is able to use a foreign language in accordance with the requirements specified for the B2+ level of the the Common European Framework of Reference for Languages and specialist terminology K_BChII_K03 is willing to critically assess the level of his/her own knowledge in the light of the achievements of the studied scientific discipline

K_BChII_K04 is willing to properly assess the acquired knowledge, respect it and disseminate it in order to solve specific cognitive and practical issues

Chemistry:

K_W02 has in-depth knowledge in the field of basic chemistry

K_W03 demonstrates in-depth knowledge in the field of modern measuring techniques used in chemical analysis K_W04 applies the acquired knowledge to an in-depth description of the properties of chemical connections, methods of their synthesis and analysis

K_W05 has extended extended knowledge in the field of the specialisation studied

K_W10 uses knowledge of the principles of operation of the

Knowledge

- defines the basic concepts of material engineering
- lists and describes the processes used in the production of functional materials
- is able to select the types of engineering materials for applications: electronics, photonics, energy storage and conversion, heterogeneous photocatalysis, health care, as well as sensing devices

Skills

Students will acquire knowledge on the interrelations between the manufacturing methods, structure and properties of materials and unique properties possible to develop by novel manufacturing and/or processing techniques. The application area covers electronics, photonics, energy storage and conversion, heterogeneous photocatalysis, health care, as well as sensing devices

Social competence

Students: understand need for learning, inspire other for learning; cooperate in group, taking different roles; exhibit creativity in determination of priorities necessary for realization of different tasks; understand social aspects of practical use of knowledge and abilities as well as connected with them responsibility.

scientific and research apparatus used in chemistry K_W11 demonstrates in-depth knowledge about the current trends in the development of chemistry as a science and the latest discoveries in this field

K_U01 plans and implements chemical experiments of extended complexity

K_U02 critically assesses the results of conducted, performed observations and theoretical calculations, and discusses errors

K_U03 finds necessary information in specialist literature, databases, and other sources, lists basic scientific journals in chemistry

K_U04 applies acquired knowledge of chemistry and related scientific disciplines

K_U08 prepares and presents oral presentations in various fields of chemistry in Polish and English, using acquired knowledge and skills as well as basic sources of scientific information

K_U10 reads with understanding scientific and popular science chemical texts in English

K_U11 communicates in a foreign language in accordance with the requirements specified for level B2 of the Common European Framework of Reference for Languages and can use specialist terminology

K_K01 knows the limitations of her/his own knowledge; understands the need for further education and can inspire other people to do so

K_K03 understands the need for systematic work on various projects of a long-term nature and knows how to set priorities for the implementation of undertaken tasks K_K04 correctly identifies and resolves dilemmas related to the profession of a chemist

K_K05 understands the need for independent search of information in scientific literature and popular science magazines

Environmental Protection:

K_OŚII_W05 describes in an in-depth manner development direction and the latest discoveries in the field of scientific disciplines related to environmental protection

K_OŚII_W09 applies safety and hygiene principles when working independently on a test or measurement stand in a laboratory or in the field

K_OŚII_W10 applies the appropriate methodology to prepare and write scientific paper, taking into account empirical data as well as legal and ethical conditions

K_OŚII_U01 on the basis of the acquired knowledge, proposes to solve environmental problems

K_OŚII_U03 plans and performs research tasks in the field or laboratory and interprets research results on environmental issues (working individually or in a team assuming various roles, including managerial functions)

K_OŚII_U06 defines her/his interests and develops them within the chosen specialisation and themes of her/his master's thesis while implementing the process of self-education and planning of own future career

K_OŚII_U10 uses Polish/a foreign language in the field of environmental protection in accordance with the requirements specified for level B2+ of the Common European Framework of Reference for Languages

Material engineering #13.3.1221

Sylabusy - Centrum Informatyczne UG

K_OŚII_K04 the group and bears responsibility for it K_OŚII_K05 critically assesses her/his own knowledge and the knowledge of the teams in which s/he works, can critically assess the content received

K_OŚII_K06 recognises the importance of knowledge in solving encountered cognitive and practical problems and consults experts in the event of difficulties in solving a problem on her/his own

K_OŚII_K09 thinks and acts in an entrepreneurial manner also in respect to the commercialization of research results K_OŚII_K10 has a need for continuous professional development

Contact

anna.golabiewska@ug.edu.pl