

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Course title	ECTS code	
Bioanalysis	13.3.1202	
Name of unit administrating study		

null

Studies

faculty	field of study	type	pierwszego stopnia
Wydział Chemii	Biznes chemiczny	form	stacjonarne
		specialty	wszystkie
		specialization	wszystkie
Wydział Chemii Chemia		type	pierwszego stopnia
		form	stacjonarne
		specialty	chemia biomedyczna, chemia kosmetyków, analityka i diagnostyka
			chemiczna, chemia żywności
		specialization	wszystkie
Wydział Chemii	Ochrona środowiska	type	pierwszego stopnia
		form	stacjonarne
		specialty	wszystkie
		specialization	wszystkie

Teaching staff

prof. dr hab. Adam Lesner

prof. di fiab. Adam Lesfiel		
Forms of classes, the realization and number of hours	ECTS credits	
Forms of classes	2	
Lecture	classes - 15 h	
The realization of activities	tutorial classes - 15 h	
classroom instruction	studnet's own work - 20 h	
Number of hours	TOTAL: 50 h - 2 ECTS	
Lecture: 15 hours		

The academic cycle

2025/2026 summer semester

Type of course	Language of instruction
an elective course	English
Teaching methods	Form and method of assessment and basic criteria for eveluation or examination requirements
Lecture will be delivered as multimedia presentation	Final evaluation
focused on bioanalysis techniques	Graded credit
	Assessment methods
	exam
	The basic criteria for evaluation
	Lecture: exam (3-5 open questions) positive grades range:
	100%: 5.0
	81-90%: 4.5
	71-80%: 4.0
	61-70%: 3.5
	51-60%: 3.0
Mathod of vovifying vocuited leaving outcomes	< 51%: 2.0

Method of verifying required learning outcomes

Required courses and introductory requirements

A. Formal requirements

lack

B. Prerequisites

lack

Aims of education

Provide the basic topics focused on broad range of analytical methods of biomolecules including electrophoresis, chromatography and others

Course contents

Properties of biomolecules. Chromatography (size exclusion, ionic, reverse phase, hydrophobic, covalent, affinity and others). Electrophoresis (planar, vertical) of proteins and nucleic acids in native and denaturing condition. Mass spectrometry assisted analysis

Bibliography of literature

Literature required to pass the course: broad range of scientific articles focused on the lecture topic

The learning outcomes (for the field of study and specialization)

Chemical Business:

K_BCh_W07 describes the construction and operating principles of scientific, technological and control-measuring apparatus

K_BC_W06

enumerates unit processes and describes issues in the field of technology and chemical engineering

K_BCh_U08

uses

the chemical nomenclature and engineering terminology properly

K_BCh_U09 using the acquired knowledge, skills and various sources of scientific information independently prepares written papers and oral presentations

K_BCh_K01 identifies the level of her/his own knowledge and skills as well as the need to update engineering knowledge, continuous professional training and personal development

Chemistry:

K_W03 explains at an advanced level the relationship between the structure of matter and its observed properties K_W04 characterizes the methods of chemical compound analysis

Environmental Protection:

K_OŚI_W01 describes at an advanced level the physical, chemical and biological phenomena occurring in nature as well as geological, geomorphological and climatic conditions of the functioning of

nature

K_OŚI_W05 explains at an advanced level the course of natural and anthropopressional physical, chemical and biological processes and phenomena occurring in nature at various levels of matter organisation

K_OŚI_U03 independently plans and develops her/his own lifelong learning

K_OŚI_U08 correctly concludes based on the available data from various sources

K_OŚI_K06 knows and appreciates the practical application of the acquired knowledge and skills in solving problems

K_OŚI_K10 identifies and sees dilemmas related to pursuing future career

Knowledge

Students are able to provide the fundamental information provided in the lecture including chromatography theory and practice, electrophoretic methods and mass spectrometry coupled techniques.

Skills

Students are able to present and explain chemical phenomena and processes, i.e. explain foundation of particular techniques, interpret data analyze information linked to bioanalysis including text, tables, plots, schemes, figures; formulate descriptions of different chemical phenomena and processes, describe them with use of own words and figures (schemes); explain similarities and differences in properties of particular techniques, explain course of different phenomena from everyday life with the use of chemical knowledge in correlation with other sciences; interpret information, formulates conclusions and explain opinions.

Social competence

Students: understand need for learning, demonstrate inventiveness in determination of main concerns essential for understanding of various duties; understand social aspects of pragmatic usage of knowledge and skills and related obligation

Contact

adam.lesner@ug.edu.pl