

Projekt współfinansowany przez Únię Europejską w ramach Europejskiego Funduszu Społecznego

Course title	ECTS code
Specialization lecture: Molecular descriptors	13.3.1297
Name of unit administrating study	

null

Studies

faculty	field of study	type	drugiego stopnia
Wydział Chemii	Chemia	form	stacjonarne
		specialty	Digital Chemistry
		specialization	wszystkie

Teaching staff

prof. dr hab. Tomasz Puzyn; dr Agnieszka Gajewicz-Skrętna

Forms of classes, the realization and number of hours	ECTS credits
Forms of classes	2010 0100.10
1 offiles of classes	3
Lecture	classes – 30 h
The realization of activities	tutorial classes – 20 h
classroom instruction	student's own work – 25 h
Number of hours	TOTAL: 75 h – 3 ECTS
Lecture: 30 hours	

The academic cycle

2023/2024 summer semester

2025/2024 summer semester		
Type of course	Language of instruction	
obligatory	English	
Teaching methods	Form and method of assessment and basic criteria for eveluation or examination requirements	
- discussion - multimedia-based lecture	Final evaluation	
	Graded credit	
	Assessment methods	
	Lecture – final test with multiple-choice questions	
	The basic criteria for evaluation	
	according to "Rules and regulations for studies at the University of Gdansk"	
	Lectures: passing the final test in the form of a multiple-choice question test (a score of	
	50% or more required to pass the exam).	

Method of verifying required learning outcomes

Required courses and introductory requirements

A. Formal requirements

Math (including Calculus), Quantum Chemistry

B. Prerequisites

None

Aims of education

Understanding of the ways of expressing molecular structure by means of molecular descriptors.

Course contents

Idea of molecular descriptors. Theoretical vs. experimental descriptors. Molecular representation. Classification of molecular descriptors: 1D, 2D, 3D, and 4D descriptors. Topological indexes: molecular graphs, graph-theoretical matrixes, connectivity indexes, characteristic polynomial, spectral indexes. Autocorrelation descriptors: Moreau-Broto autocorrelation descriptors, Moran and Geary coefficients, auto-cross-covariance transforms, autocorrelation of molecular surface properties, atom pairs, Estrada Generalized Topological Index. Geometrical descriptors: indexes from the

Specialization lecture: Molecular descriptors #13.3.1297

Sylabusy - Centrum Informatyczne UG Dział Kształcenia

geometry matrix, WHIM descriptors, GETAWY descriptors, molecular tranforms

Bibliography of literature

Literature required to pass the course

T. Puzyn, J. Leszczynski, M. T. D. Cronin (Eds): Recent Advances in QSAR Studies: Methods and Applications, Springer, Dodrecht Heidelberg London New York 2010.

Extracurricular readings

Journal of Chemiformatics

Journal of Chemical Information and Modeling

SAR and QSAR in Environmental Research

The learning outcomes (for the field of study and specialization)

K_W05: has extended knowledge in the field of the specialisation studied

K_W06: applies mathematics to the extent necessary to understand, describe and model chemical processes of extended complexity

K_U01: plans and implements chemical experiments of extended complexity

K_U02: critically assesses the results of conducted, performed observations and theoretical calculations and discusses errors

K_U03: finds necessary information in specialist literature, databases and other sources, lists basic scientific journals in chemistry

K_K01: knows the limitations of her/his own knowledge; understands the need for further education and can inspire other people to do so

K_K06: undertakes research tasks consciously and responsibly, understanding the social aspects of the practical application of the acquired knowledge and skills and the responsibility related to it

Knowledge

The student:

knows the possibilities and limitations of molecular descriptors utilized in chemoinformatics,

understands the ways of calculating the most important molecular descriptors.

Skills

The student:

provides examples of molecular descriptors used for different modelling purposes, proposed (selects) appropriate group(s) of molecular descriptors to be used for solving the problem.

Social competence

The student develops the skills of accurate and logical thinking and inference.

Contact

tomasz.puzyn@ug.edu.pl