

Projekt współfinansowany przez Únię Europejską w ramach Europejskiego Funduszu Społecznego

Course title	ECTS code
Repetitory in general and inorganic chemistry	13.3.1287
Name of unit administrating study	

Faculty of Chemistry

Studies

faculty	field of study	type	drugiego stopnia
Wydział Chemii	Chemia	form	stacjonarne
		specialty	Digital Chemistry
		specialization	wszystkie

Teaching staff

dr inż. Krzysztof Żamoić

ar niz. razyozior zamojo		
Forms of classes, the realization and number of hours	ECTS credits	
Forms of classes	3	
Auditorium classes	classes - 30 h	
The realization of activities	student's own work – 30 h	
classroom instruction	tutorial classes – 15 h	
Number of hours		
Auditorium classes: 30 hours	TOTAL: 75 h – 3 ECTS	

The academic cycle

2023/2024 winter semester

Type of course	Language of instruction
obligatory	English
Teaching methods	Form and method of assessment and basic criteria for eveluation or examination requirements
Multimedia presentation, in-class examples,	Final evaluation
exercises, solving problems, conversation and discussion.	Graded credit
	Assessment methods
	written exam (test)
	The basic criteria for evaluation
	A single choice test covering the whole material. Assessment criteria in accordance with
	the University of Gdańsk Study Regulations.

Method of verifying required learning outcomes

Required courses and introductory requirements

A. Formal requirements

none

B. Prerequisites

basic knowledge in general and inorganic chemistry

Aims of education

Familiarize students with the main aspects of general chemistry and classes of inorganic compounds

Course contents

Atomistic theory of matter (atomic nucleus, isotopes, electronic structure of atoms, quantum numbers, atomic orbitals), basic chemical terms and lows, periodic table of elements, chemical equations (including redox reactions), chemical bonds, basic types of inorganic compounds, stoichiometry, solutions and their concentrations, thermochemistry, kinetics and chemical equilibrium, theories of acids and bases, equilibria in the solutions of electrolytes, electrolytic dissociation, pH scale, pH of solutions of strong and weak acids and bases, buffer solutions, hydrolysis, elements of electrochemistry.

Bibliography of literature

Repetitory in general and inorganic chemistry #13.3.1287

Sylabusy - Centrum Informatyczne UG Dział Kształcenia

Literature required to pass the course

P. Atkins, L. Jones - CHEMISTRY. Molecules, matter, and change

P. Atkins, L. Jones, L. Laverman – Chemical principles. The quest for insight Extracurricular readings

L. Pauling - General chemistry

M. J. Sienko, R. A. Plane - Chemistry: principles and properties

J. D. Lee - Concise inorganic chemistry

F. A. Cotton - Basic inorganic chemistry

D. A. Cox - Inorganic chemistry

The learning outcomes (for the field of study and specialization)

K_W02: has in-depth knowledge in the field of general and inorganic chemistry

K_W04: applies the acquired knowledge to an in-depth description of the properties of chemical connections, methods of their synthesis and analysis

K_U01: plans chemical experiments of extended complexity

K_U03: finds necessary information in specialist literature

K_U04: applies acquired knowledge of general and inorganic chemistry and related scientific disciplines

K_K01: knows the limitations of her/his own knowledge; understands the need for further education

K_K05: understands the need for independent search of information in scientific literature

Knowledge

Students: know main states of matter; understand structure and properties of atoms as well as other chemical particles; understand essence of main types of chemical bonds; understand main chemical terms, laws and phenomena, know basic terminology and symbolism in terms of elements, inorganic compounds, electrolytes, electrolytic dissociation as well as chemical reactions in water solutions; know physicochemical properties of chosen elements and chemical compounds (oxides and hydrides of metals and nonmetals, bases, acids and salts); know main applications of known chemical substances as well as threats connected with their inappropriate use; know main techniques of calculations in

chemistry.

Students: present plainly – in both speech and writing – correct chemical argumentation; present and explain chemical phenomena and processes, i.e. write molecular and ionic equations for chemical reactions, interpret qualitatively and quantitatively equations for chemical reactions; interpret and analyze information connected with general and inorganic chemistry presented as text, tables, plots, schemes, figures; formulate descriptions of different chemical phenomena and processes, describe them with use of own words and figures (schemes); explain similarities and differences in properties of elements, relations between structure of substances and their properties; notice causal links in chemical processes performed in different conditions, where typical chemical reactions occur; explain course of different phenomena from everyday life with the use of chemical knowledge in correlation with other sciences; interpret information, formulates conclusions and explain opinions.

Social competence

Students: understand need for learning, inspire other for learning; cooperate in group, taking different roles; exhibit creativity in determination of priorities necessary for realization of different tasks; understand social aspects of practical use of knowledge and abilities as well as connected with them responsibility.

Contact

krzysztof.zamojc@ug.edu.pl