

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Course title	ECTS code
Monographic lecture - Electronic structure of molecular anions	13.3.1316
Name of unit administrating study	

Name of unit administrating study

null

Studies

faculty	field of study	type	drugiego stopnia
Wydział Chemii	Chemia	form	stacjonarne
		specialty	Digital Chemistry
		specialization	wszystkie

Teaching staff

prof. dr hab. Piotr Skurski

prof. of flab. Flots ordinal		
Forms of classes, the realization and number of hours	ECTS credits	
Forms of classes	3	
Lecture	lectures - 30 h	
The realization of activities	student's own work – 30 h	
classroom instruction	tutorial classes – 15 h	
Number of hours	TOTAL: 75 h – 3 ECTS	
Lecture: 30 hours		

The academic cycle

2024/2025 summer semester

2024/2025 summer semester	
Type of course	Language of instruction
obligatory	English
Teaching methods	Form and method of assessment and basic criteria for eveluation or examination requirements
- discussion - multimedia-based lecture	Final evaluation
	Graded credit
	Assessment methods
	Lectures – written test in a form of a set of open questions
	The basic criteria for evaluation
	Assessment criteria in accordance with the University of Gdańsk Study Regulations
	Lectures: passing the final test in a form of a set of open questions (a score of 50% or
	more required to pass the exam).

Method of verifying required learning outcomes

Written test (K_W05, K_W07, K_W08).

Discussion with the students (K_U02, K_U04).

Observation of the student's behavior during classes and during consultations. (K_K01)

Required courses and introductory requirements

A. Formal requirements

none

B. Prerequisites

basic knowledge in chemistry and physics

Aims of education

Explaining the most important types and properties of various molecular anions.

Teaching students about the role of molecular anions in chemistry.

Course contents

Electronic structure of molecular anions, most fundamental properties of molecular anions, classification of anions based on the potential responsible

Monographic lecture - Electronic structure of molecular anions #13.3.1316

Sylabusy - Centrum Informatyczne UG Dział Kształcenia

for an excess electron binding, various types of molecular anions: valence-bound anions, multipole-bound anions, metastable anions, multiply charged anions, cluster anions, double-Rydberg anions, solvated electrons. Modern theoretical methods used for studying molecular anions, the most recent discoveries concerning the subject.

The course will provide the knowledge about molecular anions in general and various types of negatively charged systems in particular. In addition, the proper selection of theoretical methods appropriate for studying certain types of anions will be explained. The course will also cover the problem of electronic, kinetic and thermodynamic stability of anions.

Bibliography of literature

Literature required to pass the course

An Introduction to Theoretical Chemistry, Jack Simons, Cambridge University Press, 2003 Extracurricular readings

Theoretical Prospects of Negative Ions, ed. J. Kalcher, Research Signpost, Trivandrum, 2002

The learning outcomes (for the field of study and specialization)

K_W05: has extended knowledge in the field of molecular anions

K_W07: selects suitable computational tools to the extent necessary to study various types of anions

K_W08: demonstrates in-depth knowledge of various anions and their role in chemistry

K_U02: critically assesses the results of performed theoretical calculations and discusses them in the context of predicted properties of molecular anions

K_U04: applies acquired knowledge of the electronic structure of molecular anions, general chemistry and related scientific disciplines

K_K01: knows the limitations of her/his own knowledge; understands the need for further education

Knowledge

Student defines and describes basic types of molecular anions and explains their stability by characterizing the most important interactions responsible for an excess electron binding.

Skills

Student has the ability of estimating the stability and lifetime of various molecular anions, develops the ability of choosing a proper quantum chemistry method to investigate the properties of a given anion, and the ability of interpreting the results of the performed theoretical calculations.

Social competence

Student develops the skills of accurate and logical thinking and inference. Learns the principles of working safely, responsibly, and efficiently. Develops the ability to work in a team.

Contact

piotr.skurski@ug.edu.pl