

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Course title	ECTS code	
Monographic lecture - Computational nanomedicine and nanotechnology	13.3.1317	
Name of unit administrating study		

null

Studies

faculty	field of study	type	drugiego stopnia
Wydział Chemii	Chemia	form	stacjonarne
		specialty	Digital Chemistry
		specialization	wszystkie

Teaching staff

prof. dr hab. Tomasz Puzyn

Forms of classes, the realization and number of hours	ECTS credits
Forms of classes	3
Lecture	classes – 30 h
The realization of activities	student's own work – 25 h
classroom instruction	tutorial classes – 20 h
Number of hours	TOTAL: 75 h – 3 ECTS
Lecture: 30 hours	

The academic cycle

2024/2025 summer semester

2024/2023 suffiller serifester		
Type of course	Language of instruction	
obligatory	English	
Teaching methods	Form and method of assessment and basic criteria for eveluation or examination requirements	
- discussion - multimedia-based lecture	Final evaluation	
	Graded credit	
	Assessment methods	
	Lecture – final test with multiple-choice questions	
	The basic criteria for evaluation	
	according to "Rules and regulations for studies at the University of Gdansk"	
	Lectures: passing the final test in the form of a multiple-choice question test (a score of	
	50% or more required to pass the exam).	

Method of verifying required learning outcomes

Required courses and introductory requirements

A. Formal requirements

None

B. Prerequisites

None

Aims of education

Knowledge on computational methods to be applied in nanotechnology and nanotoxicology.

Course contents

Nanoparticles and nanomaterials. Experimental and computational characterization of nanoparticles. Modeling adsorption, distribution, metabolism / transformation, and excretion of nanoparticles in a living organism. Computational methods for supporting the design of nanoparticles used in medicine. In silico toxicity testing of nanoparticles.

Bibliography of literature

Monographic lecture - Computational nanomedicine and nanotechnology #13.3.1317

Sylabusy - Centrum Informatyczne UG Dział Kształcenia

Literature required to pass the course

T. Puzyn, J. Leszczynski (Eds): Towards Efficient Designing of Safe Nanomaterials, RSC Publishing, Cambridge 2012.

A. Gajewicz, T. Puzyn (Eds): Computational Nanotoxicology: Challenges and Perspectives, Jenny Stanford Publishin, 2020. Extracurricular readings

Research articles published in the following journals:

ACS Nano

Nature Nanotechnology

Nanoscale

Small

Nanotoxicology

Nanomedicine: Nanotechnology, Biology and Medicine Journal of Nanotoxicology and Nanomedicine

The learning outcomes (for the field of study and specialization)

K_W06: applies mathematics to the extent necessary to understand, describe and model chemical processes of extended complexity

K_U01: plans and implements chemical experiments of extended complexity

K_U02: critically assesses the results of conducted, performed observations and theoretical calculations and discusses errors

K_U03: finds necessary information in specialist literature, databases and other sources, lists basic scientific journals in chemistry

K_K01: knows the limitations of her/his own knowledge; understands the need for further education and can inspire other people to do so

K_K04: correctly identifies and resolves dilemmas related to the profession of a chemist

K_K06: undertakes research tasks consciously and responsibly, understanding the social aspects of the practical application of the acquired knowledge and skills and the responsibility related to it

Knowledge

The student knows the possibilities and limitations of computational methods utilized in nanomedicine and nanotoxicology.

Skills

The student:

provides examples of computational methods used for designing medicine nanoparticles,

proposed (selects) appropriate computational methods to be used for solving the problem.

Social competence

The student:

understands risks and benefits related to the use of nanomaterials in medicine; formulates his/her opinions based on a solid scientific background.

Contact

tomasz.puzyn@ug.edu.pl