

Projekt współfinansowany przez Únię Europejską w ramach Europejskiego Funduszu Społecznego

Course title	ECTS code
Machine learning in chemistry	13.3.1293
Name of unit administrating study	

null

Studies

faculty	field of study	type	drugiego stopnia
Wydział Chemii	Chemia	form	stacjonarne
		specialty	Digital Chemistry
		specialization	wszystkie

Teaching staff

prof. dr hab. Tomasz Puzyn; dr inż. Karolina Jagiełło; dr Agnieszka Gajewicz-Skrętna; dr Alicja Mikołajczyk

Forms of classes, the realization and number of hours	ECTS credits
Forms of classes	6
Laboratory classes, Lecture	Lecture – 30 h
The realization of activities	Laboratory classes - 45 h
classroom instruction	Student's own work – 30 h
Number of hours	Tutorial classes – 45 h
Lecture: 30 hours, Laboratory classes: 45 hours	TOTAL: 150 h – 6 ECTS

The academic cycle

2024/2025 winter semester	
Type of course	Language of instruction
obligatory	English
Teaching methods	Form and method of assessment and basic criteria for eveluation or examination requirements
- computational chemistry experiments and case	Final evaluation
studies, analysis of obtained results and discussion multimedia-based lecture	- Graded credit - Examination
	Assessment methods
	Lecture - written/oral test Laboratory classes – colloquia and written reports including Python / R codes
	The basic criteria for evaluation
	exam: written part (obligatory): single choice test with 15 questions (1 point per question) plus three open questions (5 points per each) – max. 30 points in total. Positive grade if the

number of points ≥ 51%. For students having between 41% and 50% from the written part, due to obtain the required number of points (≥ 51%) the oral examination is obligatory. Students with the number of points ≤ 41% do not pass the final test; oral part (obligatory for students having between 41% and 50% from the written part and facultative for students with ≥ 51%): discussion on three problems related to the topic, selected by the teacher; students are allowed passing the final test twice (two attempts);

its obligatory to have a positive final grade from the lab exercises before passing the

final test.

Method of verifying required learning outcomes

Required courses and introductory requirements

A. Formal requirements

Repetitory in mathematics

- · Repetitory in general and inorganic chemistry
- · Introduction to Python programming
- · Introduction to R programming

Exploratory analysis of multidimensional chemical space

B. Prerequisites

Repetitory in mathematics

- · Repetitory in general and inorganic chemistry
- Introduction to Python programming
- · Introduction to R programming

Exploratory analysis of multidimensional chemical space

Aims of education

familiarizing the students with machine learning theory and its applications in chemistry presenting the advantages and disadvantages of various types of machine learning algorithms in chemistry

Course contents

This course is designed to provide students with foundational knowledge of practical aspects of machine learning in chemistry, including: introduction to machine learning theory and its applications,

overview of various types of machine learning algorithms (supervised and semi-supervised machine learning methods; classification and regression methods; reinforcement learning algorithms; generative versus discriminative models),

challenges in application of machine learning in chemistry (methods for handling uncertain, limited, imbalanced and noisy data; feature selection; model selection and assessment),

open source chemoinformatics software.

Bibliography of literature

Literature required to pass the course

S. D. Brown, R. Tauler, B. Walczak (ed): Comprehensive chemometrics: Chemical and biochemical data analysis. Amsterdam: Elsevier, 2009 R. Kramer: Chemometric techniques for quantitative analysis. New York: Marcel Dekker, Inc, 2005

Extracurricular readings

J. Leszczynski, A. Kaczmarek-Kedziera, T. Puzyn, M. G. Papadopulos, H. Reis, M. Shukla (ed): Handbook of Computational Chemistry (2nd Edition). Springer 2016. Volume 5: Chemoinformatics, Puzyn T (ed.).

The learning outcomes (for the field of study and specialization)

K_W05

has extended knowledge in the field of the specialisation studied

K_W06:

applies mathematics to the extent necessary to understand, describe and model chemical processes of extended complexity

K_W08:

demonstrates in-depth knowledge of theoretical computational and IT methods used to solve problems in chemistry

K_W09:

classifies specialist IT tools used in statistical evaluation of experiment results

K_U03

finds necessary information in specialist literature, databases and other sources, lists basic scientific journals in chemistry

K_K02

works in a team taking on various roles in it

K_K03

understands the need for systematic work on various projects of a long-term nature and knows how to set priorities for the implementation of undertaken tasks K K06

raises her/his professional and personal competences by

Knowledge

At the completion of this course, the student is expected to be able to: know and understand the theoretical background of various types of machine learning algorithms, including: multiple linear regression, partial least squares regression, k-nearest neighbors, support vector machines, classification and regression trees and artificial neutral networks,

know the basic division of machine learning methods, and list the application of particular groups of these methods in the analysis of chemical data, describe the most important challenges for the application of machine learning in chemistry,

describe the benefits and advantages of using machine learning in chemistry, provide examples of software packages for machine learning in chemistry.

Skills

At the completion of this course, the student is expected to be able to: choose and apply the appropriate machine learning algorithm to solve a particular problem under consideration in the chemistry science domain, evaluate the efficacy of the developed model and critically interpret the results

evaluate the efficacy of the developed model and critically interpret the results obtained with specific machine learning methods,

properly implement strategies for handling limited, imbalanced and noisy data

Social competence

At the completion of this course, the student is expected to be able to: describe the benefits of using machine learning methods in her/his daily research practice,

understand the need of deeper learning of the machine learning,

develop interpersonal skills such as communication, cooperation in group (taking different roles), and problem-solving abilities,

understand the social aspects of practical use of knowledge and abilities as well as

Machine learning in chemistry #13.3.1293 Sylabusy - Centrum Informatyczne UG Dział Kształcenia

using information provided in various sources	connected with them responsibility.
Contact	
tomasz.puzyn@ug.edu.pl	