

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Course title	ECTS code
What can electrochemical methods offer in the study of biologically active compounds?	13.3.1211

Name of unit administrating study

null

Studies

faculty	field of study	type	first tier studies (BA)
Faculty of Chemistry	Chemical Business	form	full-time
		specialty	all
		specialization	all
Faculty of Chemistry	Chemistry	type	first tier studies (BA)
		form	full-time
		specialty	all
		specialization	all
Faculty of Chemistry	Environmental	type	first tier studies (BA)
	Protection	form	full-time
		specialty	all
		specialization	all

Teaching staff

dr Sandra Ramotowska

Forms of classes, the realization and number of hours	ECTS credits
Forms of classes	2
Lecture	Classes – 15 h
The realization of activities	Consultations– 15 h
classroom instruction	Student's own work – 20 h
Number of hours	
Lecture: 15 hours	Total 50 h – 2 ECTS

The academic cycle

2024/2025 summer semester		
Type of course	Language of instruction	
an elective course	english	
Teaching methods	Form and method of assessment and basic criteria for eveluation or	
multimedia-based lecture	examination requirements	
	Final evaluation	
	Graded credit	
	Assessment methods	
	exam with test questions	
The basic criteria for evaluation		
	Positive note from an exam with 10-20 test questions	
	91-100%: 5.0	
	81-90%: 4.5	
	71-80%: 4.0	
	61-70%: 3.5	
	51-60%: 3.0	
	< 51%: 2.0	
	Assessment criteria in accordance with the University of Gdańsk Study Regulations.	

Method of verifying required learning outcomes

Required courses and introductory requirements

A. Formal requirements

lack

S J# 19 ingersote

B. Prerequisites

lack

Aims of education

Presenting how small molecules interact with the DNA chain is essential in pharmaceuticals research.

Familiarize students with an electrochemical approach to the study of drug-biomolecule interactions, with particular emphasis on voltammetric techniques.

Familiarize students with theoretical and practical aspects of electrochemical methods in the analysis of biomolecule interactions.

Course contents

Topics of the lecture: electrochemical methods consisting in electrolysis of the diffusion layer and current measurements, voltammetric methods, cyclic voltammetry, differential pulse voltammetry, electrochemical characteristics of biologically active compounds, redox potential in healthy cells and neoplastic cells, types of drug-DNA interactions, techniques used to describe the interactions principles of measurements with electrochemical techniques, types of electrodes and research approaches, the use of voltammetric methods to study drug-DNA interactions

Bibliography of literature

Literature required to pass the course

SCB de Oliveira, VC Diculescu, AM Chiorcea Paquim, AM Oliveira-Brett - Electrochemical Biosensors for DNA–Drug Interactions Extracurricular readings

A Mukherjee WD Sasikala - Advances in Protein Chemistry and Structural Biology

The learning outcomes (for the field of study and specialization)

Chemical Business:

K_BCh_W07

describes the construction and operating principles of scientific, technological and control-measuring apparatus Chemistry:

K_W10

enumerates and describes the aspects of the construction, operation and use of measuring apparatus and equipment used in experimental works in the field of chemistry and related sciences

K_K06

raises her/his professional and personal competences by using information provided in various sources Environmental Protection:

K_OŚI_W01

describes at an advanced level the physical, chemical and biological phenomena occurring in nature as well as geological, geomorphological and climatic conditions of the functioning of nature

Knowledge

Students know: types of drug-DNA interactions, theoretical and practical aspects of electrochemical methods in the analysis of biomolecule interactions, principles of voltammetric methods,

Skills

lack

Social competence

Students understand the need of learning and update knowledge, the practical application of the acquired knowledge and skills in solving problems

Contact

sandra.ramotowska@ug.edu.pl