

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Course title	ECTS code	
Waste processing technology	13.3.1210	
Name of unit administrating study		
null		

Studies

faculty	field of study	type	first tier studies (BA)
Faculty of Chemistry	Chemical Business	form	full-time
		specialty	all
		specialization	all
Faculty of Chemistry	Chemistry	type	first tier studies (BA)
		form	full-time
		specialty	all
		specialization	all
Faculty of Chemistry	Environmental	type	first tier studies (BA)
	Protection	form	full-time
		specialty	all
		specialization	all

Teaching staff

dr inż. Anna Gołąbiewska; dr inż. Anna Malankowska; dr inż. Joanna Nadolna; dr inż. Aleksandra Pieczyńska

Forms of classes, the realization and number of hours	ECTS credits
Forms of classes	2
Laboratory classes	classes - 15 h
The realization of activities	tutorial classes - 15 h
classroom instruction	student's own work - 20 h
Number of hours	TOTAL: 50 h - 2 ECTS
Laboratory classes: 15 hours	

The academic cycle

2024/2025 summer semester

Type of course	Language of instruction	
Type of course	Language of manachon	
an elective course	english	
Teaching methods	Form and method of assessment and basic criteria for eveluation or	
	examination requirements	
Practical laboratory work with project – chemical	Final evaluation	
experiments, analysis of obtained results and		
discussion	Graded credit	
uiscussioii	Assessment methods	
	short test and project	
	' '	
	The basic criteria for evaluation	
	Positive grade for the written tests consisting open questions and positive grade for	
	written project.	
	Assessment criteria in accordance with the University of Gdańsk Study Regulations	

Method of verifying required learning outcomes

Required courses and introductory requirements

A. Formal requirements

lack

B. Prerequisites

lack

Aims of education

To acquaint students with waste processing technologies.

Course contents

Definition and classification of waste. The ink removal from waste paper by flotation method, cellulose determination. Hydrometallurgical recovery of silver. Management of plastics - raw material and energy recycling. Determination of crude fat in food products by the extraction method in the Soxhlet apparatus. Volatile ashes management.

Bibliography of literature

Literature required to pass the course

Thomas Christensen- Solid Waste Technology and Management

Extracurricular readings

Singh, Jiwan; Kalamdhad, Ajay - Advances in Waste Management

The learning outcomes (for the field of study and specialization)

Chemical Business:

K_BCh_W02 enumerates laws and theories in chemistry, physics and mathematics necessary to formulate and solve simple engineering tasks

K_BCh_W06 enumerates unit processes and describes issues in the field of technology and chemical engineering K_BCh_U01 based on the acquired knowledge, identifies, analyses and solves engineering tasks and problems in broadly understood chemistry

K_BCh_U02 uses methods, techniques and tools in formulating and solving engineering tasks in the field of chemistry

K_BCh_U03 plans, selects the appropriate research and measuring equipment and performs chemical experiments; analyses the results and draws conclusions based on them K_BCh_U08 uses the chemical nomenclature and engineering terminology properly

K_BCh_K01 identifies the level of her/his own knowledge and skills as well as the need to update engineering knowledge, continuous professional training, and personal development

Chemistry:

 $\ensuremath{\mathrm{K}}\xspace_{\ensuremath{\mathrm{W}}\xspace}$ enumerates laws and theories in chemistry, physics, mathematics, and biology

K_W10 enumerates and describes the aspects of the construction, operation and use of measuring apparatus and equipment used in experimental works in the field of chemistry and related sciences

K_U01 identifies, analyses, and solves problems in the field of broadly understood chemistry on the basis of the acquired knowledge

K_U02 performs analyses using experimental methods and draws conclusions based on them

K_K01 identifies the level of her/his own knowledge and skills and the need for continuous learning and personal development

K_K02 works individually demonstrating initiative and independence of activity and cooperates in a team fulfilling various roles in it

Environmental Protection:

K_OŚI_W01 describes at an advanced level the physical, chemical, and biological phenomena occurring in nature as well as geological, geomorphological and climatic conditions of the functioning of nature

K_OŚI_W02 characterises at an advanced level the relationships and relationships between various disciplines

Knowledge

- defines the basic concepts of waste processing
- lists and describes the processes used in the processing, use and disposal of waste
- describes the construction and operating principles of the installation for physico-chemical, biological and thermal waste treatment
- discusses the impact of waste production and processing technologies on the natural environment

Skills

The student is able to:

- choose a management method for selected types of municipal and industrial waste
- describes the environmental impact of selected waste treatment installations
- evaluate the effectiveness of the processes used in waste management

Social competence

Student:

- is aware of the negative impact of waste on the environment.
- follows the safety rules in force in the chemical laboratory.
- collaborates in a team during laboratory tests and processing of results.
- links the importance of the development of waste management technologies for the good condition of the natural environment and human health;

Waste processing technology #13.3.1210

Sylabusy - Centrum Informatyczne UG

of natural sciences and science, uses knowledge of mathematics, physics, chemistry, and biology in the description of basic concepts, concepts and principles in environmental protection

K_OŚI_W07 explains at an advanced level the causal relationship between the content of specific pollutants and the state of the environment (including human health) and the occurrence of adverse phenomena on a local, regional, and global scale

K_OŚI_U02 plans, selects appropriate research and measuring equipment and devices, performs physicochemical measurements and experiments; analyses the results and draws conclusions based on them K_OŚI_U04 uses specialist language in the discussion and properly uses the nomenclature in the field of environmental protection and individual disciplines related to it K_OŚI_K02 works individually demonstrating initiative and independence in actions, and effectively cooperates in a team, performing various roles in it

K_OŚI_K03 independently sets or implements a set action plan specifying priorities for its implementation; critically assesses its progress

Contact

anna.golabiewska@ug.edu.pl