

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Course title	ECTS code	
HPLC - a technique for many occasions	13.3.1219	
Name of unit administrating study		

null

Studies

faculty	field of study	type	second tier studies (MA)
Faculty of Chemistry	Chemical Business	form	full-time
		specialty	all
		specialization	all
Faculty of Chemistry	Chemistry	type	second tier studies (MA)
		form	full-time
		specialty	all
		specialization	all
Faculty of Chemistry	Environmental	type	second tier studies (MA)
	Protection	form	full-time
		specialty	all
		specialization	all

Teaching staff

dr Maria Dzierżyńska; dr Ewa Wieczerzak; dr Julia Witkowska

an mana pendej mona, an ema model east, an oana manona		
Forms of classes, the realization and number of hours	ECTS credits	
Forms of classes	6	
Laboratory classes, Lecture	Classes – 45 h	
The realization of activities	Tutorial classes – 15 h	
classroom instruction, online classes	Students's own work – 30 h	
Number of hours		
Laboratory classes: 45 hours. Lecture: 15 hours	Total: 90 h – 6 ECTS	

The academic cycle		
2023/2024 winter semester		
Type of course	Language of instruction	
an elective course	english	
Teaching methods	Form and method of assessment and basic criteria for eveluation or examination requirements	
- conducting experiments - multimedia-based lecture	Final evaluation	
	- Graded credit	
	- Examination	
	Assessment methods	
	- written exam with open questions	
	- assignment work – completing a specific practical assignment	
	The basic criteria for evaluation	
	Lecture:	
	Achievement of at least 51 % of the total number of points from the written exam.	
	Seminar:	
	Achievement of at least 51 % of the total number of points from each of the tests.	
	Student has the rights to one retake the failed exam / test. The retaken exam / test will	
	be considered as passed when students achieves at least 51% of the total number of	
	points from the retaken exam / test. Points from the first term and the retake do not sum	
	ир	
Method of verifying required learning outcomes		
Required courses and introductory requirements		

A. Formal requirements

English acqusition on the communicative level (B1)

B. Prerequisites

lack

Aims of education

- · familiarize students with application of HPLC
- · presenting HPLC techniques as a tool in analytical chemistry

Course contents

Topics of lecture: physicochemical fundaments of separation on HPLC, basic terminology of HPLC, kinds of columns used in HPLC, different systems of HPLC, detectors in HPLC, modificators of liquid phase in HPLC, gradient and isocratic mode, applications of HPLC, case studies. Topics of laboratory work: calibration curve build, analyzing unknown analyte, sample preparation.

Bibliography of literature

Literature required to pass the course:

M. C. McMaster - HPLC: A Practical User's Guide

M. W. Dong - HPLC and UHPLC for Practicing Scientists Extracurricular readings:

- S. Kromidas Practical Problem Solving in HPLC
- D. Corradini Handbook of HPLC

The learning outcomes (for the field of study and specialization)

Chemical Business:

K_BChII_W01 - knows and understands in-depth complex physicochemical processes and is able to analyse their course in connection with other fields of science K_BChII_U01 - is able to based on the acquired knowledge,

propose a solution to problems in chemistry, taking into account the economic aspect, using advanced measurement and analytical techniques

K_BChII_U04 - is able to independently plan and perform specific research tasks in the field or in the laboratory, interpret their results working individually or in a team, assuming various roles and functions in it

K_BChII_K01 - is willing to develop and disseminate appropriate best practices in the workplace and beyond Chemistry:

 K_W03 - demonstrates in-depth knowledge in the field of modern measuring techniques used in chemical analysis K_U01 - plans and implements chemical experiments of extended complexity

K_K06 - undertakes research tasks consciously and responsibly, understanding the social aspects of the practical application of the acquired knowledge and skills and the responsibility related to it

Environmental Protection:

K_OŚII_W04 - chooses methods, techniques and research tools used in environmental protection

K_OŚII_W09 - applies safety and hygiene principles when working independently on a test or measurement stand in a laboratory or in the field

K_OŚII_U02 - uses advanced measurement and analytical techniques used in environmental protection

K_OŚII_K05 - critically assesses her/his own knowledge and the knowledge of the teams in which s/he works, can critically assess the content received

Knowledge

Students are able to understand basics of HPLC, the physicochemical fundamentals of separation on chromatography column used in HPLC systems; know basic terminology used in HPLC; can recognize different column applications; can recognize different HPLC systems; can apply gradient and isocratic conditions of separation; understand different modificators of liquid phase; application of calibration curve; understand

Skills

Students are able to establish gradient and isocratic separation methods; build calibration curve; calculate concentration from calibration curve; read peak area; can analyze the results; can present results in coherent way.

Social competence

Students understand need for learning, inspire other for learning; cooperate in group, taking different roles; exhibit creativity in determination of priorities necessary for realization of different tasks; understand social aspects of practical use of knowledge and abilities as well as connected with them responsibility.

Contact

maria.dzierzynska@ug.edu.pl