



Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego



| Course title                          | ECTS code |
|---------------------------------------|-----------|
| Basic mechanizms in organic chemistry | 13.3.1201 |
|                                       |           |

# Name of unit administrating study

null

# **Studies**

| faculty              | field of study    | type           | first tier studies (BA) |
|----------------------|-------------------|----------------|-------------------------|
| Faculty of Chemistry | Chemical Business | form           | full-time               |
|                      |                   | specialty      | all                     |
|                      |                   | specialization | all                     |
| Faculty of Chemistry | Chemistry         | type           | first tier studies (BA) |
|                      |                   | form           | full-time               |
|                      |                   | specialty      | all                     |
|                      |                   | specialization | all                     |
| Faculty of Chemistry | Environmental     | type           | first tier studies (BA) |
|                      | Protection        | form           | full-time               |
|                      |                   | specialty      | all                     |
|                      |                   | specialization | all                     |

# **Teaching staff**

dr hab. Aneta Szymańska, profesor uczelni; dr Ewa Wieczerzak; dr Marta Spodzieja; dr Maria Dzierżyńska; dr hab. Elżbieta Jankowska, profesor uczelni; dr hab. Magdalena Wysocka, profesor uczelni

| Forms of classes, the realization and number of hours | ECTS credits                                         |
|-------------------------------------------------------|------------------------------------------------------|
| Forms of classes                                      | 6                                                    |
| Auditorium classes, Lecture                           | Estimated working time:                              |
| The realization of activities                         | Hours with the participation of the academic teacher |
| lectures in the classroom                             | participation in lectures 30 h                       |
| Number of hours                                       | participation in seminar 15 h                        |
| Auditorium classes: 15 hours, Lecture: 30 hours       | consultations 2 h                                    |
|                                                       | exam 2 h                                             |
|                                                       | Hours without the participation of the academic      |
|                                                       | teacher                                              |
|                                                       | preparation for the exam 36 h                        |
|                                                       | preparation for the test 24 h                        |
|                                                       | homework 11 h                                        |
|                                                       |                                                      |
|                                                       | Total 120 h - 6 ECTS                                 |

# The academic cycle

2023/2024 summer semester

| Type of course                                                                                                                                                                                                            | Language of instruction                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| an elective course                                                                                                                                                                                                        | english                                                                                     |
| - Lecture with multimedia presentation of basic issues of organic chemistry - discussion with the teacher, solving of the practical problems connected to the material discussed during the lectures, homework evaluation | Form and method of assessment and basic criteria for eveluation or examination requirements |
|                                                                                                                                                                                                                           | Final evaluation                                                                            |
|                                                                                                                                                                                                                           | Graded credit                                                                               |
|                                                                                                                                                                                                                           | Assessment methods                                                                          |
|                                                                                                                                                                                                                           | - written exam with open questions                                                          |
|                                                                                                                                                                                                                           | - tests with practical problems to solve based on the acquired knowledge                    |
|                                                                                                                                                                                                                           | The basic criteria for evaluation                                                           |
|                                                                                                                                                                                                                           |                                                                                             |

# Basic mechanizms in organic chemistry #13.3.1201

Sylabusy - Centrum Informatyczne UG Dział Kształcenia



# Lecture:

• Achievement of at least 51 % of the total number of points from the written exam.

#### Seminar:

• Achievement of at least 51 % of the total number of points from each of the tests.

Student has the rights to one retake the failed exam / test. The retaken exam / test will be considered as passed when students achieves at least 51% of the total number of points from the retaken exam / test. Points from the first term and the retake do not sum up

# Method of verifying required learning outcomes

#### ecture

· Answers to the questions covering the problems presented during the lectures

#### Seminar:

- attendance, active participation in the class
- · correct answers to the questions and proper solving of the problems presented to the student during the tests

# Required courses and introductory requirements

#### A. Formal requirements

Completed course - General chemistry

# B. Prerequisites

lack

# Aims of education

To teach basic mechanisms of organic reactions of both ionic and radical nature including the information concerning the reactive intermediates in organic chemistry, basic types or reactions: substitution, elimination and addition in saturated and unsaturated systems; the rules of writing reaction mechanism; predicting the product based on the nature of the intermediate.

As a result of the course students will:

- gain the knowledge of the nature and relative stability (reactivity) of basic organic intermediates,
- recognize and name the basic types of organic reactions (substitution, elimination, addition)
- propose the type and mechanism of the reaction for the given substrates
- draw the basic mechanism of the reaction using proper arrows
- predict product(s) of the reaction, assign main and side-products
- explain the regio- and stereochemistry of the reaction
- design simple synthetic scheme leading to a given compound

# **Course contents**

- Reactive intermediates in organic chemistry: carbocations, carboanions, radicals and carbenes (structure, stability and methods of formation)
- Mono- and bimolecular nucleophilic substitution (SN1 and SN2) and elimination reactions (E1 and E2) in aliphatic system (nucleophile vs. base, leaving group, transition state, stereochemistry, solvent effect, rearrangements)
- Nucleophilic substitution in aromatic system (addition-elimination and benzyne mechanisms)
- Nucleophilic substitution and addition in acyl group (reactions of aldehydes, ketones and carboxylic acid derivatives, similarities and differences)
- Electrophilic addition to unsaturated systems (alkenes, alkines, dienes) regio-and stereoselectivity, rearrangements;
- Electrophilic aromatic substitution of benzene and substituted benzene derivatives (halogenation, sulfonation, nitration, Friedel-Crafts acylation and alkylation), mechanisms, substituent effects upon rate and regioselectivity
- Reactions of enols and enolates (enolate formation by deprotonation, regioselectivity of deprotonation, aldol condensation, including intramolecular and crossed versions, Claisen condensations and similar ractions, enolate alkylation)
- Writing the reaction mechanism
- Designing of simple reaction schemes

# Bibliography of literature

Literature required to pass the course

Sykes, P.: A guidebook to mechanism in organic chemistry, Longman Scientific and Technical

Wade Jr., L.G.: Organic Chemistry, Pearson

Hornback, J.M.: Organic chemistry, Thomson Brooks/Cole

Hart, H.; Craine, L.E.; Hart, D.J.: Organic Chemistry, Brooks/Cole, Cengage Learning

Extracurricular readings

monographic materials provided by the teacher



# The learning outcomes (for the field of study and specialization)

Chemical Business:

Student:

K\_BCh\_W02: enumerates laws and theories in chemistry, physics and mathematics necessary to formulate and solve simple engineering tasks

K\_BCh\_U08: uses the chemical nomenclature and engineering terminology properly

K\_BCh\_U09: using the acquired knowledge, skills and various sources of scientific information independently prepares written papers and oral presentations

K\_BCh\_K01: identifies the level of her/his own knowledge and skills as well as the need to update engineering knowledge, continuous professional training and personal development

K\_BCh\_K02: works individually demonstrating initiative and independence in actions, and effectively cooperates in a team, performing various roles in it

Chemistry:

Student

K\_W01: enumerates laws and theories in chemistry, physics, mathematics and biology

K\_W02: describes at an advanced level the properties of elements and the most important chemical compounds, enumerates the methods of their preparation and methods of analysis

K\_W03: explains at an advanced level the relationship between the structure of matter and its observed properties K\_U01: identifies, analyses and solves problems in the field of broadly understood chemistry on the basis of the acquired knowledge

K\_U07: prepares documented elaboration on a specific problem in the field of selected chemical and physical issues

K U09: is able to learn independently

K\_K01: identifies the level of her/his own knowledge and skills and the need for continuous learning and personal development

K\_K02: works individually demonstrating initiative and independence of activity and cooperates in a team fulfilling various roles in it

K\_K06:raises her/his professional and personal competences by using information provided in various sources

# Knowledge

Students enumerate laws and theories in chemistry necessary to solve a given problem, use proper chemical nomenclature and distinguish different types of reactions in organic chemistry. Explain the relationships between the structure of an organic compound and methods of obtaining it.

#### **Skills**

Students plan and select the right chemical reactions to plan the synthesis of a given organic compound. Prepare written elaboration on a selected problem and present it to other. Analyze the results and make conclusions based on them

# Social competence

Students are able to establish or realize a defined action plan setting priorities for its implementation.

Students are able to identify their level of knowledge and skills and understand the necessity of life-long learning in organic chemistry and personal development. Students understand the importance of self-learning and rising his/her competences

# Contact

aneta.szymanska@ug.edu.pl